
Grant Agreement No.: 723174
Call: H2020-ICT-2016-2017
Topic: ICT-38-2016 - MEXICO: Collaboration on ICT
Type of action: RIA

D2.4: Reference data models for

data intensive and IoT based Smart
City, Smart Health and Smart

Security V2
Revision: v.1.0

Work package WP2
Task Task 2.4
Due date 29/05/2018
Submission date 06/06/2018
Deliverable lead INAOE
Version 2.0
Authors Miguel Palacios (INAOE), Netzahualcóyotl Hernández (CICESE),

Blanca Vázquez (INFOTEC), Enrique Sucar (INAOE), Nestor
Velasco Bermeo (ITESM), Leon Alberne (CENIDET), Hugo

D2.4: Reference Data Models do Data Intensive and IoT based Smart City,
Smart Health and Smart Security Applications (V2.0)

© SmartSDK Consortium 2016-2018 Page 2 of 73

Estrada (INFOTEC), Alicia Martinez Rebollar (CENIDET),
Fernando Ramirez (CENIDET), Miguel González (ITESM),
German Molina (HOPU), Francisco Cardoso (UBIWHERE),
Francisco Monsanto (UBIWHERE), Luis Valentin (INAOE), Felipe
Orihuela (INAOE), Blanca Onofre (CENIDET) and Samuel
Jimenez (INFOTEC).

Reviewers Federico M. Facca (MARTEL).

Abstract This deliverable documents the data models extended/developed in
the SmartSDK project for Smart applications based on FIWARE.

Keywords Data Models, FIWARE, Data Management, Smart Health, Smart
City, Smart Security.

Document Revision History

Version Date Description of change List of contributor(s)

V1.5 5/06/2018 Applying review changes Miguel Palacios (INAOE)

V1.4 23/05/2018 Adjustments regarding
SmartHealth Sections

Netzahualcóyotl Hernández
(CICESE)

V1.3.1 22/05/2018 Some very minor changes to
text in Section Data Models
required by scenario -> Smart
Health

Felipe Orihuela (INAOE).

V1.3 21/05/2018 Data models update for the City
Scenario

Samuel Jimenez (INFOTEC)

V1.2 19/05/2018 Adjustments regarding Security
and Appendix Section.

Miguel Palacios (INAOE)

V1.1 17/05/2018 Reused data models added for
the Security Scenario.

Blanca Onofre (CENIDET)

V1.0.1 08/05/2018 First version of the document.
From D2.1 and with Minor
changes delivered to partners.

Miguel Palacios (INAOE)

Disclaimer

The information, documentation and figures available in this deliverable, is written by the SmartSDK
(A FIWARE-based Software Development Kit for Smart Applications for the needs of Europe and
Mexico) – project consortium under EC grant agreement 723174 and does not necessarily reflect the
views of the European Commission. The European Commission is not liable for any use that may be
made of the information contained herein.

Copyright notice

© 2016 - 2018 SmartSDK Consortium

D2.4: Reference Data Models do Data Intensive and IoT based Smart City,
Smart Health and Smart Security Applications (V2.0)

© SmartSDK Consortium 2016-2018 Page 3 of 73

* R: Document, report (excluding the periodic and final reports)

DEM: Demonstrator, pilot, prototype, plan designs

DEC: Websites, patents filing, press & media actions, videos, etc.

OTHER: Software, technical diagram, etc.

Project co-funded by the European Commission in the H2020 Programme

Nature of the deliverable: R
Dissemination Level

PU Public, fully open, e.g. web ü
CI Classified, information as referred to in Commission Decision 2001/844/EC
CO Confidential to smartSDK project and Commission Services

D2.4: Reference Data Models do Data Intensive and IoT based Smart City,
Smart Health and Smart Security Applications (V2.0)

© SmartSDK Consortium 2016-2018 Page 4 of 73

EXECUTIVE SUMMARY

SmartSDK, to facilitate the development of Smart applications, provides a set of recipes that combine
a number of reusable elements, namely, Generic Enablers, Reference architectures and Data Models.
As regards Data Models, SmartSDK, following the FIWARE design principles, formalizes dynamic
and context-related data models using NGSI, thus providing standard means to exchange data among
the different services composing a Smart application.
Within SmartSDK, the focus relates to three specific domains: Smart Health, Smart City and Smart
security. These domains are covered in the project by means of three scenarios and related
applications, for which SmartSDK either reuses existing harmonized FIWARE Data Models, or
develops new ones according to the needs of the scenarios. The first scenario deals with the collection
and analysis of health data; the second scenario deals with the provisioning of multi-modal traffic
routes that take into account pollutants; the third scenario deals with the analysis of parking and build
video camera streamings to detect potential security issues.
The deliverable documents, based on the guidelines included in Deliverable 3.4 “SmartSDK Reference
Models and Recipes V2”, the data models developed to cover the main requirements elicited by
considered scenario without loss of generalization. Thus, novel data models formalized in NGSI by
SmartSDK, are anyhow based on existing best practices, data models and ontologies used in relevant
state-of-the art services and/or standard bodies.
For each model, the deliverable provides a description of the entities that compose it, the relations
among the entities, and the attributes that define an entity. The rationale for the design choices is also
briefly discussed in relation to existing relevant state-of-the-art data models.
Novel date models include:

è Alert

è Questionnaire

è Questionnaire/Question

è Questionnaire/Answer

è Transport Schedule

è Agency

è Route

è Stop

è Trip

è AffectTransitService

è TransitServiceAlert

è VideoObject

è VisualObject

è AeroAllergenObserved

The deliverable discuss as well how existing FIWARE data models are used in the context of the three
application scenarios covered in SmartSDK.
Reused data models include:

è Device/DeviceModel

è Vehicle

D2.4: Reference Data Models do Data Intensive and IoT based Smart City,
Smart Health and Smart Security Applications (V2.0)

© SmartSDK Consortium 2016-2018 Page 5 of 73

è AirQualityObserved

è PublicVehicleModel

è WeatherObserved

è TrafficFlowObserved

è OffStreetParking

è Road

è RoadSegment

è Building

This document is the updated version of the D2.1: “Reference data models for data intensive and IoT
based Smart City, Smart Healthcare and Smart Security applications”.

D2.4: Reference Data Models do Data Intensive and IoT based Smart City,
Smart Health and Smart Security Applications (V2.0)

© SmartSDK Consortium 2016-2018 Page 6 of 73

TABLE OF CONTENTS

EXECUTIVE SUMMARY ... 4	

TABLE OF CONTENTS .. 6	

ABBREVIATIONS .. 7	

1	 INTRODUCTION .. 8	

1.1	 Structure of the deliverable .. 8	

1.2	 Audience ... 8	

1.3	 Updates from previous version ... 8	

2	 OVERVIEW OF SMARSDK APPLICATION SCENARIOS .. 9	

2.1	 Smart Health ... 9	

2.2	 Smart City ... 9	

2.3	 Smart Security .. 9	

3	 DATA MODELS FOR SMART SCENARIOS ... 10	

3.1	 Data models shared across scenarios .. 10	

3.1.1	 Reused data models .. 10	

3.1.2	 New data models .. 23	

3.2	 Data models required by scenario .. 29	

3.2.1	 Smart Health ... 29	

3.2.2	 Smart City ... 30	

3.2.3	 Smart Security .. 51	

4	 DATA PRIVACY AND SECURITY ANALYSIS ... 65	

5	 CONCLUSIONS ... 67	

REFERENCES ... 68	

APPENDIX A – ADDITIONAL DATA MODELS .. 69	

D2.4: Reference Data Models do Data Intensive and IoT based Smart City,
Smart Health and Smart Security Applications (V2.0)

© SmartSDK Consortium 2016-2018 Page 7 of 73

ABBREVIATIONS

GTFS General Transit Feed Specification

OCB Orion Context Broker

NGSI Next Generation Service Interface

SDK Standard Development Kit

SAREF Smart Appliances REference Ontology

MNC Mobile Network Code

MCC Mobile Country Code

GSM Global System for Mobile Communications

CDMA Code Division Multiple Access

iDEN Integrated Digital Enhanced Network

TETRA Terrestrial Trunked Radio

3G Third generation of wireless mobile telecommunications

4G Third generation of wireless mobile telecommunications

HVAC Heating, Ventilation and Air Conditioning

LAN Local Area Network

RFC Request For Comments

UN/CEFACT United Nations Centre for Trade Facilitation and Electronic Business

GPS Global Positioning System

ABS Anti-lock Braking System

LPG Liquefied Petroleum Gas

CNG Compressed Natural Gas

URL Uniform Resource Locator

POI Point Of Interaction

ViSOR Video Surveillance Online Repository

D2.4: Reference Data Models do Data Intensive and IoT based Smart City,
Smart Health and Smart Security Applications (V2.0)

© SmartSDK Consortium 2016-2018 Page 8 of 73

1 INTRODUCTION

To ensure that models and architectures defined in FIWARE [1] are enough general to cover data
requirements and regulations in different domains, a standardization process is required. Thus, one of
the main objectives of the SmartSDK [2] project is to design abstract models that organize information
and standardize the relationship existing in different scenarios, ensuring interoperability across
different applications and facilitating the deployment of applications based on FIWARE.
SmartSDK provides three application scenarios in the following domains:

è Smart Health: the scenario deals with the collection and analysis of health data; the second
scenario;

è Smart City: the scenario deals with the provisioning of multi-modal traffic routes that take into
account pollutants;

è Smart Security: the scenario deals with the analysis of parking and build video camera
streamings to detect potential security issues

This document describes the structure of the data models proposed / extended in the context of this
application scenarios. In the design process, FIWARE data model guidelines were followed.

1.1 Structure of the deliverable

è Section 2 overviews the SmartSDK scenarios that are developed in the context of the Smart
Health, Smart City and Smart Security domains.

è Section 3 describes the shared data models and data models specific to a given application
scenario.

è Section 4 presents conclusions of the data models design process.

1.2 Audience

This deliverable is mainly intended for:

è Developers interested into reusing SmartSDK Data Models in their applications.

è Developers and Knowledge modellers interested into contributing to SmartSDK Data Models.

1.3 Updates from previous version

è Smart Health: new examples related to the three applications developed in the scenario.

è Smart City: new data model proposed AeroAllergenObserved. WeatherObserved and
TrafficFlowObserved added to the reused data models by the scenario.

è Smart Security: extension to the new data model VisualObject. Road and RoadSegment added
to the reused data models by the scenario.

Description, general structure and examples are provided for every model added.

D2.4: Reference Data Models do Data Intensive and IoT based Smart City,
Smart Health and Smart Security Applications (V2.0)

© SmartSDK Consortium 2016-2018 Page 9 of 73

2 OVERVIEW OF SMARSDK APPLICATION SCENARIOS

2.1 Smart Health

Advances in mobile and wearable sensing are allowing the inference of activities and behaviors
associated with health by providing a computational infrastructure for the collection of daily-life data.
The healthcare application developed in SmartSDK aims to facilitate the harmonization and sharing of
mobile sensing datasets for healthcare. In this context we have built three different projects as proof of
concept to illustrate the use of the proposed model, which for the purposes of this document we have
named as: Risk of fall, Heart rate monitoring & IoT feedback, and Rehabilitation monitoring.
For instance, one of these applications focuses on mobile devices that collects sensor data from
physical tests conducted by following clinical protocols to assess the risk of falls in older adults. The
developed application has been designed as a proof of concept. Parameter of interest (associated to the
risk of falling) are analyzed a posteriori and raw sensor data is kept for further inspection.
The SmartSDK project focuses on creating a cloud-based infrastructure that supports the development
of mobile healthcare applications based on analyzing data gathered from sensors to allow different
stakeholders, such as patients and physicians to record and analyze how their activities and behavior
may influence a healthier lifestyle.

2.2 Smart City

The application developed in the Smart City domain (called Green Route) will focus on supporting the
citizen mobility in high polluted cities, like Mexico City, with the aim of improving the life quality of
citizens and fostering environmental friendly behaviors by citizens. The end-user perspective is shortly
summarized below.
The objective of Green Route is to help the final user to determine the best route to follow to reach a
destination, taking into account the user profile (such as health conditions), and the user preferences,
such as transport type. Green Route proposes the ideal route for the user, avoiding routes with high
levels of pollution, traffic jam or pollen, etc., allowing for instance, to obtain the preferred routes for
people with respiratory diseases.

2.3 Smart Security

Taking care of events happening in a video surveillance area is a complex task. The security system
cameras are sending visual information to the main system online and the end-user (commonly a
security guard) could not be able to pay attention to all the visual information.
The Smart Security application aims to support the security guard to prevent risk situations and
consequently improve the quality of life of the people who live in the surveillance area.
The Smart Security application will focus on detecting and analyzing security risk such as, theft,
access controls, people detection, fights, crowd analysis, etc., through the combination of video
cameras and mobile sensors, in both, indoor and outdoor scenarios, for instance, parking lots and
buildings.

D2.4: Reference Data Models do Data Intensive and IoT based Smart City,
Smart Health and Smart Security Applications (V2.0)

© SmartSDK Consortium 2016-2018 Page 10 of 73

3 DATA MODELS FOR SMART SCENARIOS

Re-usable and harmonized data models are an important objective of the FIWARE initiative. This
section describes the data models (new or reused) identified during the development of the smart
applications in SmartSDK.

3.1 Data models shared across scenarios

The next sections describe the data models that are common to at least two smart scenarios.

3.1.1 Reused data models

This section describes the models that are used as defined by the current data models version in
FIWARE. Thus, as the data model design is an incremental process we include the current definition
(as a Snapshot) of the data model reused. The Example of use subsection shows how a data model is
used by one application. If an extension is proposed to these data models, the one is identified as a
requirement (in bold) in the application’s Example of use section.

3.1.1.1 Device/DeviceModel

This model is used by the three SmartSDK project’s application: Smart City, Smart Security, and
Smart Health. An extension is required by Smart Security and SmartHealth applications.

è Device: represents an apparatus (hardware + software + firmware) intended to accomplish a
particular task. It is a tangible object which contains some logic and is producer and/or
consumer of data [3][4].

Data Model:
• id : Unique identifier.
• type : Entity type. It must be equal to Device.
• category : See attribute category from DeviceModel. Optional but recommended to optimize queries.
• controlledProperty : See attribute controlledProperty from DeviceModel. Optional but recommended to

optimize queries.
• controlledAsset : The asset(s) (building, object, etc.) controlled by the device.

o Attribute type: List of Text or Reference(s) to another entity.
o Optional

• mnc : This property identifies the Mobile Network Code (MNC) of the network the device is attached
to. The MNC is used in combination with a Mobile Country Code (MCC) (also known as a "MCC /
MNC tuple") to uniquely identify a mobile phone operator/carrier using the GSM, CDMA, iDEN,
TETRA and 3G / 4G public land mobile networks and some satellite mobile networks.

o Attribute type: Text
o Optional

• mcc : Mobile Country Code - This property identifies univoquely the country of the mobile network the
device is attached to.

o Attribute type: Text
o Optional

• macAddress : The MAC address of the device.
o Attribute type: Text
o Optional

• ipAddress : The IP address of the device. It can be a comma separated list of values if the device has
more than one IP address.

o Attribute type: Text
o Optional

• supportedProtocol : See attribute supportedProtocol from DeviceModel. Needed if due to a software

D2.4: Reference Data Models do Data Intensive and IoT based Smart City,
Smart Health and Smart Security Applications (V2.0)

© SmartSDK Consortium 2016-2018 Page 11 of 73

update new protocols are supported. Otherwise it is better to convey it at DeviceModel level.
• configuration : Device's technical configuration. This attribute is intended to be a dictionary of

properties which capture parameters which have to do with the configuration of a device (timeouts,
reporting periods, etc.) and which are not currently covered by the standard attributes defined by this
model.

o Attribute type: StructuredValue
o Attribute metadata:

§ dateModified : It captures the last modification timestamp of this attribute.
§ Type: DateTime

o Optional
• location : Location of this device represented by a GeoJSON geometry of type point.

o Attribute type: geo:json.
o Normative References: https://tools.ietf.org/html/rfc7946
o Optional.

• name : A mnemonic name given to the device.
o Normative References: name
o Optional

• description : Device's description.
o Normative References: description
o Optional

• dateInstalled : A timestamp which denotes when the device was installed (if it requires installation).
o Attribute type: DateTime
o Optional

• dateFirstUsed : A timestamp which denotes when the device was first used.
o Attribute type: DateTime
o Optional

• dateManufactured : A timestamp which denotes when the device was manufactured.
o Attribute type: DateTime
o Optional

• hardwareVersion : The hardware version of this device.
o Attribute type: Text
o Optional

• softwareVersion : The software version of this device.
o Attribute type: Text
o Optional

• firmwareVersion : The firmware version of this device.
o Attribute type: Text
o Optional

• osVersion : The version of the host operating system device.
o Attribute type: Text
o Optional

• dateLastCalibration : A timestamp which denotes when the last calibration of the device happened.
o Attribute type: DateTime
o Optional

• serialNumber : The serial number assigned by the manufacturer.
o Normative References: https://schema.org/serialNumber
o Mandatory

• provider : The provider of the device.
o Normative References: https://schema.org/provider
o Optional

• refDeviceModel : The device's model.
o Attribute type: Reference to an entity of type DeviceModel.
o Optional

• batteryLevel : Device's battery level. It must be equal to 1.0 when battery is full. 0.0 when battery ìs
empty. null when cannot be determined.

o Type: Number
o Allowed values: Interval [0,1]

D2.4: Reference Data Models do Data Intensive and IoT based Smart City,
Smart Health and Smart Security Applications (V2.0)

© SmartSDK Consortium 2016-2018 Page 12 of 73

o Attribute metadata:
§ timestamp: Timestamp when the last update of the attribute happened. This value can

also appear as a FIWARE TimeInstant
§ Type: DateTime

o Optional
• deviceState : State of this device from an operational point of view. Its value can be vendor dependent.

o Type: Text
o Attribute metadata:

§ timestamp: Timestamp when the last update of the attribute happened. This value can
also appear as a FIWARE TimeInstant

§ Type: DateTime
o Optional

• dateLastValueReported : A timestamp which denotes the last time when the device successfully
reported data to the cloud.

o Attribute type: DateTime
o Optional

• value : A observed or reported value. For actuator devices, it is an attribute that allows a controlling
application to change the actuation setting. For instance, a switch device which is currently on can
report a value "on"of type Text. Obviously, in order to toggle the referred switch, this attribute value
will have to be changed to "off".

o Attribute type: Any type, depending on the device. Usually Text or QuantitativeValue.
o Attribute metadata:

§ timestamp: Timestamp when the last update of the attribute happened. This value can
also appear as a FIWARE TimeInstant

§ Type: DateTime
o Optional

• dateModified : Last update timestamp of this entity.
o Attribute type: DateTime
o Optional

• dateCreated : Entity's creation timestamp.
o Attribute type: DateTime
o Optional

è DeviceModel: represents a model of device, capturing its static properties [3][4].

• id : Unique identifier.
• type : Entity type. It must be equal to DeviceModel.
• category : Device's category(ies).

o Attribute type: List of Text
o Allowed values, one of the following or any other meaningful to the application:

§ sensor : A device that detects and responds to events or changes in the physical
environment such as light, motion, or temperature changes.
https://w3id.org/saref#Sensor.

§ actuator : A device responsible for moving or controlling a mechanism or system.
https://w3id.org/saref#Actuator.

§ meter : A device built to accurately detect and display a quantity in a form readable by
a human being. Partially defined by SAREF.

§ HVAC : Heating, Ventilation and Air Conditioning (HVAC) device that provides
indoor environmental comfort. https://w3id.org/saref#HVAC.

§ network : A device used to connect other devices in a network, such as hub, switch or
router in a LAN or Sensor network. (https://w3id.org/saref#Network.

§ multimedia : A device designed to display, store, record or play multimedia content
such as audio, images, animation, video. https://w3id.org/saref#Multimedia

o Mandatory
• deviceClass : Class of constrained device as specified by RFC 7228. If the device is not a constrained

device this property can be left as null or undefined.

D2.4: Reference Data Models do Data Intensive and IoT based Smart City,
Smart Health and Smart Security Applications (V2.0)

© SmartSDK Consortium 2016-2018 Page 13 of 73

o Attribute type: Text
o Normative References: RFC7228
o Allowed values: (C0, C1, C2)
o Optional

• controlledProperty : Anything that can be sensed, measured or controlled by.
o Attribute type: List of Text
o Allowed values: (some of this values are defined as instances of the class Property in SAREF)

§ (temperature, humidity, light, motion, fillingLevel, occupancy, power, pressure,
smoke, energy, airPollution, noiseLevel, weatherConditions, precipitation,
windSpeed, windDirection, barometricPressure, solarRadiation, depth, pH, pressure,
conductivity, conductance, tss, tds, turbidity, salinity, orp, cdom, waterPollution,
location, speed, heading, weight, waterConsumption, gasComsumption,
electricityConsumption)

o Mandatory
• function : The functionality necessary to accomplish the task for which a Device is designed. A device

can be designed to perform more than one function. Defined by SAREF.
o Attribute type: List of Text
o Allowed values: (levelControl, sensing, onOff, openClose, metering, eventNotification), from

SAREF.
o Optional

• supportedProtocol : Supported protocol(s) or networks.
o Attribute type: List of Text.
o Allowed values: (ul20, mqtt, lwm2m, http, websocket, onem2m, sigfox, lora, nb-iot, ec-gsm-

iot, lte-m, cat-m, 3g, grps) or any other value meaningful for an application.
o Optional

• supportedUnits : Units of measurement supported by the device.
o Attribute type: List of Text.
o Allowed values: The unit code (text) of measurement given using the UN/CEFACT Common

Code (max. 3 characters).
o Optional

• energyLimitationClass : Device's class of energy limitation as per RFC 7228.
o Attribute type: Text
o Normative References: RFC7228
o Allowed values: (E0, E1, E2, E9)
o Optional

• brandName : Device's brand name.
o Attribute type: Text
o See also: https://schema.org/brand
o Mandatory

• modelName : Device's model name.
o Attribute type: Text
o See also: https://schema.org/model
o Mandatory

• manufacturerName : Device's manufacturer name.
o Attribute type: Text
o See also: https://schema.org/model
o Mandatory

• name : Name given to this device model.
o Normative References: https://schema.org/name
o Mandatory

• description : Device's description
o Normative References: description
o Optional

• documentation : A link to device's documentation.
o Attribute type: URL
o Optional

• image : A link to an image depicting the concerned device.

D2.4: Reference Data Models do Data Intensive and IoT based Smart City,
Smart Health and Smart Security Applications (V2.0)

© SmartSDK Consortium 2016-2018 Page 14 of 73

o Normative References: https://schema.org/image
o Optional

• dateModified : Last update timestamp of this entity.
o Attribute type: DateTime
o Optional

• dateCreated : Entity's creation timestamp.
o Attribute type: DateTime
o Optional

The next examples show the instantiation of Device/DeviceModel by the applications developed:

è Camera Device in Smart Security

Device DeviceModel

{
 "id": "device-1234",
 "type": "Device",
 "category": ["multimedia"],
 "controlledAsset": ["Building8"],
 “name”: “BuildingCamera1”
 "ipAddress": "192.14.56.78",
 "serialNumer": "9845A",
 “refDeviceModel”:”cameraModel-345”,
 "deviceState": "ok",
 “configuration”: {“encodingFormat”:”mpeg4”,
 “minVideoFrameWidth”:”300”,
…}
 “softwareVersion”:”5.4.49”,
 "dateFirstUsed": "2014-09-11",
 “dateLastValueReport”: “2016-04-05”
}

{
 "id": "cameraModel-345",
 "type": "DeviceModel",
 "category": ["multimedia"],
 “supportedProtocol”: [“rtsp”]
 "brandName": "vicon",
 "modelName": "XWE23",
 “manufacturerName”:”Device Inc”,
 "documentation":
"http://www.camera.html",
 “dateCreated”:”2014-09-11”,
 }

è refDevice property in Smart City (see Alert Data Model)

{
 "id": "Alert:1",
 "type": "Alert",
 "alertType": “Weather condition",
 "eventObserved": “Heat alert",
 "location": {
 "type": "Point",
 "coordinates": [-3.712247222222222, 40.423852777777775]
 },
 "dateTime": "2017-01-02T09:25:55.00Z",
 "description": "41–54 °C Heat cramps and heat exhaustion are likely; heat stroke is
probable with continued activity.",
 "refuser":"",
 "refDevice": “Device1"
}

è Smartphone Device in Smart Health and Smart Security
The Smart Health and Smart Security scenarios proposed to extend the Device data model by
integrating a new attribute (i.e consistOf) used to connect a device’s entity with other entities of same
type. The extension relies on the need of describing attributes values from each sensor component
embedded into a Device. Thus, a Device instantiation allows to create a compound device with

D2.4: Reference Data Models do Data Intensive and IoT based Smart City,
Smart Health and Smart Security Applications (V2.0)

© SmartSDK Consortium 2016-2018 Page 15 of 73

internal self-contained devices (as a smartphone).

Also, an Inclusion of two specific devices type as part of the attribute list category are required.

Requirements:

• consistOf: Reference to other entity.

o Attribute type: List of references to an entity of type Device.

o Optional.

It is worth to mention that this attribute is included in both SAREF and oneM2M ontologies,
on which FIWARE Device data models is based.

• medicalDevice: A medical device that is especially targeted at acute and continuing health
data, such as patient monitors, ventilators, infusion pumps, ECG devices, etc.
https://www.iso.org/obp/ui/#iso:std:iso-ieee:11073:en

o metadata:

§ Allowed value : (bloodPressureMonitor, glucoseMeter, pulseOximeter,
weighingScale, thermometer).
http://standards.ieee.org/news/2013/ieee_11073_medical-
device_communication.html

• smartphone: A specific product line (such as iPhone) that performs many of the functions of a
computer, typically having a touchscreen interface, Internet access, and an operating system
capable of running downloaded apps. https://schema.org/ContactPoint
	

Example project A. Risk of fall application.

Device (Smartphone) DeviceModel

{
 "id": “sensor-345A",
 "type": "Device",
 "category": "smartphone",
 "osVersion": "Android 4.0",
 "softwareVersion": "MA-Test 1.6",
 "hardwareVersion": "GP-P9872",
 "firmwareVersion": "SM-A310F",
 “consistOf":[
 "sensor-9845A",
 "sensor-9845B",
 "sensor-9845C"
],
 "refDeviceModel": "myDevice-345",
 "dateCreated": "2016-08-22T10:18:16Z"
}

{
 "id": "myDevice-345",
 "type": "DeviceModel",
 "category": "smartphone",
 "brandName": "mySensor",
 "modelName": "S4Container 345",
 "manufacturerName": "mySensor Inc.",
 "dateCreated": "2016-08-22T10:18:16Z",
}

Device (Accelerometer)

{
 "id": “sensor-9845A",
 "type": "Device",
 "category": "sensor",
 "function": ["sensing"],
 "controlledProperty": ["accelerometer”],
 "hardwareVersion": "SMT-P9872",
 "firmwareVersion": "SMT-A310F",

D2.4: Reference Data Models do Data Intensive and IoT based Smart City,
Smart Health and Smart Security Applications (V2.0)

© SmartSDK Consortium 2016-2018 Page 16 of 73

 "value": "-69.895,72.0493,4.90137,2017-01-18T20:45:43.765Z-0800 -
69.844,72.0726,4.85817,2017-01-18T20:45:43.799Z-0800...",
 "configuration": {
 "data": {
 "format": "csv"
 },
 "sampleRate": {
 "value": "60",
 "type": "hz"
 }
 },
 "dateCreated": "2016-08-22T10:20:16Z"
}

Example project B. Heart rate monitoring and IoT feedback application.

Device (Smartwatch) DeviceModel

{
 "id": “smw-234",
 "type": "Device",
 "category": "smartwatch",
 "osVersion": "Android 4.0",
 “consistOf":[
 "sensor-984A"
],
 "refDeviceModel": "myDevice-346",
 "dateCreated": "2017-08-22T10:18:16Z"
}

{
 "id": "myDevice-346",
 "type": "DeviceModel",
 "category": "smartwatch",
 "brandName": "mySensor",
 "modelName": "Moto 360",
 "dateCreated": "2017-08-22T10:18:16Z",
}

Device (Heart rate)

{
 "id": “sensor-984A",
 "type": "Device",
 "category": "sensor",
 "function": ["sensing"],
 "controlledProperty": ["heart_rate”],
 "hardwareVersion": "SMT-P9872",
 "firmwareVersion": "SMT-A310F",
 "value": "79",
 "configuration": {
 "data": {
 "format": "csv"
 },
 "sampleRate": {
 "value": "1",
 "type": "beats/min"
 }
 },
 "dateCreated": "2017-08-22T10:20:16Z"
}

Example project C. Rehabilitation application.

Device (Smartphone) Device (SmartWatch)

{
 "id": “sensor-XT1671",

{
 "id": “sensor-HW2-1632",

D2.4: Reference Data Models do Data Intensive and IoT based Smart City,
Smart Health and Smart Security Applications (V2.0)

© SmartSDK Consortium 2016-2018 Page 17 of 73

 "type": "Device",
 "category": "smartphone",
 "osVersion": "Android 7.0",
 "softwareVersion": "FiHealth 3.2",
 "hardwareVersion": "PVT1",
 "firmwareVersion": "NPPS25.137-15-
11", “consistOf":[“sensor-HW2-1632”,sensor-
HW2-1685”],
 "refDeviceModel": "myDevice-G5",
 "dateCreated": "2017-01-10T16:29:32"
}

 "type": "Device",
 "category": "smartwatch",
 "osVersion": "Android 7.0",
 "softwareVersion": "FiWatch 2.1",
 "hardwareVersion": "LEO-BX9",
 "firmwareVersion": "NXH20B",
 “consistOf":[“8283A”],
 "refDeviceModel": "myDevice-HW2",
 "dateCreated": "2017-01-10T16:29:32"
}

Device (Accelerometer)

{
 "id": “sensor-8283A",
 "type": "Device",
 "category": "sensor",
 "function": ["sensing"],
 "controlledProperty": ["accelerometer”],
 "hardwareVersion": "",
 "firmwareVersion": "",
 "value": "1.323,1.058,0.126,...,...,...",
 "configuration": {
 "data": {
 "format": "Json"
 },
 "sampleRate": {
 "value": "1",
 "type": "hz"
 }
 },
 "dateCreated": "2017-01-10T16:29:32"
}

Smartphone Device in Smart Security.

Device (Smartphone) DeviceModel

{
 "id": “smartphone-345",
 "type": "Device",
 "category": "smartphone",
 "osVersion": "Android 4.0",
 "softwareVersion": "MA-Test 1.6",
 "hardwareVersion": "GP-P9872",
 "firmwareVersion": "SM-A310F",
 “consistOf":[
 "accelerometer-smartphone-345",
 "gyroscope-smartphone-345"
],
"location": [18.876567, -99.63876],
 "refDeviceModel": "deviceModel-smartphone-
345",
 "dateCreated": "2016-08-22T10:18:16Z"
}

{
 "id": "deviceModel-smartphone-345",
 "type": "DeviceModel",
 "category": "smartphone",
 "brandName": "mySensor",
 "modelName": "S4Container 345",
 "manufacturerName": "mySensor Inc.",
 "dateCreated": "2016-08-22T10:18:16Z",
}

Device (Accelerometer) Device (Gyroscope)

{ {

D2.4: Reference Data Models do Data Intensive and IoT based Smart City,
Smart Health and Smart Security Applications (V2.0)

© SmartSDK Consortium 2016-2018 Page 18 of 73

 "id": “accelerometer-smartphone-345",
 "type": "Device",
 "category": "sensor",
 "function": ["sensing"],
 "controlledProperty": ["accelerometer”],
 "hardwareVersion": "SMT-P9872",
 "value": "-3.895|2.0493|9.87|2017-01-
18T20:45:43.765Z-0800",
 "dateCreated": "2016-08-22T10:20:16Z"
}

 "id": “gyroscope-smartphone-345",
 "type": "Device",
 "category": "sensor",
 "function": ["sensing"],
 "controlledProperty": ["gyroscope”],
 "hardwareVersion": "SMT-P5672",
 "value": "45.895|7.0493|12.901|2017-01-
18T20:45:43.765Z-0800",
 "dateCreated": "2016-08-22T10:20:16Z"
}

3.1.1.2 Vehicle/VehicleModel

These models belong to the Transportation Harmonized data models.

è Vehicle: represents a vehicle with all its individual characteristics [3][4].

Data Model:

• id : Entity's unique identifier.
• type : Entity type. It must be equal to Vehicle.
• name : Name given to this vehicle.

o Normative References: https://schema.org/name
o Optional

• description : Vehicle description.
o Normative References: https://schema.org/description
o Optional

• vehicleType : Type of vehicle from the point of view of its structural characteristics. This is different
than the vehicle category (see below).

o Attribute type: Text
o Allowed Values: The following values defined by VehicleTypeEnum and VehicleTypeEnum2,

DATEX 2 version 2.3:
§ (agriculturalVehicle, bicycle, bus, minibus, car, caravan, tram, tanker,

carWithCaravan, carWithTrailer, lorry, moped, tanker, motorcycle,
motorcycleWithSideCar, motorscooter, trailer, van, caravan,
constructionOrMaintenanceVehicle)

§ (trolley, binTrolley, sweepingMachine, cleaningTrolley)
o Mandatory

• category : Vehicle category(ies) from an external point of view. This is different than the vehicle type
(car, lorry, etc.) represented by the vehicleType property.

o Attribute type: List of Text
o Allowed values:

§ (public, private, municipalServices, specialUsage).
§ (tracked, nonTracked). Tracked vehicles are those vehicles which position is

permanently tracked by a remote system.
§ Or any other needed by an application They incorporate a GPS receiver together with

a network connection to periodically update a reported position (location, speed,
heading ...).

o Mandatory
• location : Vehicle's last known location represented by a GeoJSON Point. Such point may contain the

vehicle's altitude as the third component of the coordinates array.
o Attribute type: geo:json.
o Normative References: https://tools.ietf.org/html/rfc7946
o Attribute metadata:

§ timestamp: Timestamp which captures when the vehicle was at that location. This
value can also appear as a FIWARE TimeInstant

D2.4: Reference Data Models do Data Intensive and IoT based Smart City,
Smart Health and Smart Security Applications (V2.0)

© SmartSDK Consortium 2016-2018 Page 19 of 73

§ Type: DateTime or ISO8601 (legacy).
§ Mandatory

o Mandatory only if category contains tracked.
• previousLocation : Vehicle's previous location represented by a GeoJSON Point. Such point may

contain the previous vehicle's altitude as the third component of thecoordinates array.
o Attribute type: geo:json.
o Normative References: https://tools.ietf.org/html/rfc7946
o Attribute metadata:

§ timestamp: Timestamp which captures when the vehicle was at that location.
• Type: DateTime
• Mandatory

o Optional
• speed : Denotes the magnitude of the horizontal component of the vehicle's current velocity and is

specified in Kilometers per Hour. If provided, the value of the speed attribute must be a non-negative
real number. null MAY be used if speed is transiently unknown for some reason.

o Attribute type: Number
o Default unit: Kilometers per hour
o Attribute metadata:

§ timestamp : Timestamp which captures when the vehicle was moving at that speed.
This value can also appear as a FIWARE TimeInstant

• Type: DateTime or ISO8601 (legacy).
• Mandatory

o Mandatory only if category contains tracked.
• heading : Denotes the direction of travel of the vehicle and is specified in decimal degrees, where 0° ≤

heading < 360°, counting clockwise relative to the true north. If the vehicle is stationary (i.e. the value
of the speed attribute is 0), then the value of the heading attribute must be equal to null. null MAY be
used if heading is transiently unknown for some reason.

o Attribute type: Number
o Attribute metadata:

§ timestamp : Timestamp which captures when the vehicle was heading towards such
direction. This value can also appear as a FIWARE TimeInstant

§ Type: DateTime or ISO8601 (legacy).
§ Mandatory

o Mandatory only if category contains tracked.
• cargoWeight : Current weight of the vehicle's cargo.

o Attribute type: Number
o Attribute metadata:

§ timestamp: Timestamp associated to this measurement. This value can also appear as
a FIWARE TimeInstant

• Type: DateTime or ISO8601 (legacy).
• Mandatory

o Default unit: Kilograms
o Optional

• vehicleIdentificationNumber : The Vehicle Identification Number (VIN) is a unique serial number used
by the automotive industry to identify individual motor vehicles.

o Normative References: https://schema.org/vehicleIdentificationNumber
o Mandatory if vehiclePlateIdentifier is not defined.

• vehiclePlateIdentifier : An identifier or code displayed on a vehicle registration plate attached to the
vehicle used for official identification purposes. The registration identifier is numeric or alphanumeric
and is unique within the issuing authority's region.

o Normative References: DATEX II vehicleRegistrationPlateIdentifier
o Attribute Type: Text
o Mandatory if vehicleIdentificationNumber is not defined.

• dateVehicleFirstRegistered : The date of the first registration of the vehicle with the respective public
authorities.

o Normative References: https://schema.org/dateVehicleFirstRegistered
o Optional

D2.4: Reference Data Models do Data Intensive and IoT based Smart City,
Smart Health and Smart Security Applications (V2.0)

© SmartSDK Consortium 2016-2018 Page 20 of 73

• dateFirstUsed : Timestamp which denotes when the vehicle was first used.
o Attribute type: DateTime
o Optional

• purchaseDate : The date the item e.g. vehicle was purchased by the current owner.
o Normative References: https://schema.org/purchaseDate
o Optional

• mileageFromOdometer : The total distance travelled by the particular vehicle since its initial production,
as read from its odometer.

o Normative References: https://schema.org/mileageFromOdometer
o Attribute metadata:

§ timestamp: Timestamp associated to this measurement. This value can also appear as
a FIWARE TimeInstant

• Type: DateTime or ISO8601 (legacy).
• Mandatory

o Optional
• vehicleConfiguration : A short text indicating the configuration of the vehicle, e.g. '5dr hatchback ST

2.5 MT 225 hp' or 'limited edition'.
o Normative References: https://schema.org/vehicleConfiguration
o Optional

• color : Vehicle's color.
o Normative References: https://schema.org/color
o Optional

• owner : Vehicle's owner.
o Attribute Type: https://schema.org/Person or https://schema.org/Organization
o Optional

• feature : Feature(s) incorporated by the vehicle.
o Attribute type: List of Text
o Allowed values: (gps, airbag, overspeed, abs, wifi, backCamera, proximitySensor,

disabledRamp, alarm, internetConnection) or any other needed by the application.
§ In order to represent multiple instances of a feature it can be used the following

syntax: "<feature>,<occurences>". For example, a car with 4 airbags will be
represented by "airbag,4".

o Optional
• serviceProvided : Service(s) the vehicle is capable of providing or it is assigned to.

o Attribute type: List of Text
o Allowed values: (garbageCollection, parksAndGardens, construction, streetLighting,

roadSignalling, cargoTransport, urbanTransit, maintenance, streetCleaning,
wasteContainerCleaning, auxiliaryServices goodsSelling, fairground, specialTransport) or any
other value needed by an specific application.

o Optional
• vehicleSpecialUsage : Indicates whether the vehicle is been used for special purposes, like commercial

rental, driving school, or as a taxi. The legislation in many countries requires this information to be
revealed when offering a car for sale.

o Normative References: https://auto.schema.org/vehicleSpecialUsage
o Allowed values: (taxi, ambulance, police, fireBrigade, schoolTransportation, military)
o Optional

• refVehicleModel : Vehicle's model.
o Attribute type: Reference to a VehicleModel entity.
o Optional

• areaServed : Higher level area served by this vehicle. It can be used to group vehicles per responsible,
district, neighbourhood, etc.

o Attribute type: Text
o Optional

• serviceStatus : Vehicle status (from the point of view of the service provided, so it could not apply to
private vehicles).

o Allowed values:
§ parked : Vehicle is parked and not providing any service at the moment.

D2.4: Reference Data Models do Data Intensive and IoT based Smart City,
Smart Health and Smart Security Applications (V2.0)

© SmartSDK Consortium 2016-2018 Page 21 of 73

§ onRoute : Vehicle is performing a mission. A comma-separated modifier(s) can be
added to indicate what mission is currently delivering the vehicle. For instance
"onRoute,garbageCollection" can be used to denote that the vehicle is on route and in
a garbage collection mission.

§ broken : Vehicle is suffering a temporary breakdown.
§ outOfService : Vehicle is on the road but not performing any mission, probably going

to its parking area.
o Attribute type: Text
o Attribute metadata:

§ timestamp : Timestamp which reflects when the referred service status was captured.
• Type: DateTime
• Mandatory

o Optional
• dateModified : Last update timestamp of this entity.

o Attribute type: DateTime
o Optional

• dateCreated : Creation timestamp of this entity.
o Attribute type: DateTime
o Optional

è VehicleModel: represents a model of vehicle, capturing its static properties such as
dimensions, materials or features [3][4].

Data Model:

• id : Entity's unique identifier.
• type : Entity type. It must be equal to VehicleModel.
• name : Name given to this vehicle model.

o Normative References: https://schema.org/name
o Mandatory

• description : Vehicle model description.
o Normative References: https://schema.org/description
o Optional

• vehicleType : Type of vehicle from the point of view of its structural characteristics.
o See definition at Vehicle.
o Mandatory

• brandName : Vehicle's brand name.
o Attribute type: Text
o See also: https://schema.org/brand
o Mandatory

• modelName : Vehicle's model name.
o Attribute type: Text
o See also: https://schema.org/model
o Mandatory

• manufacturerName : Vehicle's manufacturer name.
o Attribute type: Text
o See also: https://schema.org/model
o Mandatory

• vehicleModelDate : The release date of a vehicle model (often used to differentiate versions of the same
make and model).

o Normative References: https://schema.org/vehicleModelDate
o Optional

• cargoVolume : The available volume for cargo or luggage. For automobiles, this is usually the trunk
volume.

o Normative References: https://schema.org/cargoVolume
o Default Unit: Liters

D2.4: Reference Data Models do Data Intensive and IoT based Smart City,
Smart Health and Smart Security Applications (V2.0)

© SmartSDK Consortium 2016-2018 Page 22 of 73

o Optional
o Note: If only a single value is provided (type Number) it will refer to the maximum volume.

• fuelType : The type of fuel suitable for the engine or engines of the vehicle.
o Normative References: https://schema.org/fuelType
o Allowed values: one Of (gasoline, petrol(unleaded), petrol(leaded), petrol, diesel, electric,

hydrogen, lpg, autogas, cng, biodiesel ethanol, hybrid electric/petrol, hybrid electric/diesel,
other)

o Optional
• fuelConsumption : The amount of fuel consumed for traveling a particular distance or temporal duration

with the given vehicle (e.g. liters per 100 km).
o Normative References: https://schema.org/fuelConsumption
o Default unit: liters per 100 kilometer.
o Optional

• height : Vehicle's height.
o Normative References: https://schema.org/height
o Optional

• width : Vehicle's width.
o Normative References: https://schema.org/width
o Optional

• depth : Vehicle's depth.
o Normative References: https://schema.org/width
o Optional

• weight : Vehicle's weight.
o Normative References: https://schema.org/weight
o Optional

• vehicleEngine : Information about the engine or engines of the vehicle.
o Normative References: https://schema.org/vehicleEngine
o Optional
o Note: This property could be at vehicle level as well.

• url : URL which provides a description of this vehicle model.
o Normative References: https://schema.org/url
o Optional

• image: Image which depicts this vehicle model.
o Normative References: https://schema.org/image
o Optional

• dateModified : Last update timestamp of this entity.
o Attribute type: DateTime
o Optional

• dateCreated : Creation timestamp of this entity.
o Attribute type: DateTime
o Optional

The models are used in the Smart Security and Smart City Applications.

è Use in Smart Security

Vehicle

{
 "id": "vehicle-1234",
 "type": "Vehicle",
 "category": ["private"],
 "vehicleType": “car”,
 “name”: “VehicleID1”
 "location":{"type": "point",
 "coordinates": [-3.1644, 40.62234] },
 "speed": "50",

D2.4: Reference Data Models do Data Intensive and IoT based Smart City,
Smart Health and Smart Security Applications (V2.0)

© SmartSDK Consortium 2016-2018 Page 23 of 73

 “color”:”red”,
 "dateModified": “2016-04-05”,
 “dateCreated”: “2016-01-05”
}

è Use in Smart City

Vehicle

{
 "id": "vehicle:private:1",
 "type": "Vehicle",
 "vehicleType": "car",
 "brandName":"Fiat",
 "defaultCar":"yes",
 "modelName":"500",
 "vehicleModelDate": "2017",
 "fuelType": "diesel",
 "fuelConsumption":"liters per 100 km",
 "vehiclePlateIdentifier": "3456ABC",
 "dateCreated": "2017-01-02T09:25:55.00Z",
 "dateModified": "2017-02-02T011:13:55.00Z"
}

3.1.2 New data models

This section describes all those data models that were designed because of the new requirements
discovered in the applications development were not satisfied by the data models available on
FIWARE. The structure of the data models is described in detail.

3.1.2.1 Alert

This new data model was first proposed by the Smart City scenario, but after discussion the Smart
Security and Smart HealthCare scenarios decided to merge their original Notifications data model into
the Alert Data Model proposed by the Smart City scenario.

The entity models an alert generated by a user in a given location. This model could be used to send
alerts related to traffic jam, accidents, weather conditions, high level of pollutants and so on. The
objective of this model is to define all the data that will send to Orion Context Broker. Then, an
application could subscribe to OCB and to take this information and to generate notifications for a user
or trigger other actions.

Alerts are context data generated by final users (humans) or devices, such as smartphones or software
apps. Also, a Smart Spot or Cloudino could send alerts if these technologies can incorporate some type
of processing device that could process data and to determine if the data contains some data to be
communicated to users. For instance, a Smart Spot could produce an alert about high levels of Ozone
and in the same way the Cloudino could send alerts of strong rain to users.

An alert is generated by a specific situation that trigger an alert. The main features of an alert are that it
is not predictable, and it is not a recurrent data. That means that an alert could be an accident or a high
level of pollutants measure, additionally it could be the fall down of a patient or a car driving in the
opposite direction.

The alerts generated could be when a user or device detects an irregular situation sends an alert to a set
of users. The context data around the alert is sent to the Orion Context Broker according to specific

D2.4: Reference Data Models do Data Intensive and IoT based Smart City,
Smart Health and Smart Security Applications (V2.0)

© SmartSDK Consortium 2016-2018 Page 24 of 73

data model. Some examples of context data are: type of alert (traffic, suspicious activities, and
pollution, etc.), severity, location and so on.

Data model:

• id : Entity's unique identifier.
• type : Entity type. It must be equal to Alert.
• category : Define the category of alert (Traffic jam, accidents, weather conditions, high level of

pollutants)
o Attribute type: Text
o Allowed values:

§ (traffic, weather, environment, health, security)
o Mandatory

• subCategory : Describe the sub category of alert.
o Attribute type: Text
o Allowed values:

§ (trafficJam, carAccident, carWrongDirection, carStopped, pothole, roadClosed,
roadWorks, hazardOnRoad, injuredBiker) (for traffic category)

§ (rainfall, highTemperature, lowTemperature, heatWave, ice, snow, wind, fog, flood,
tsunami, tornado, tropicalCyclone, hurricane) (for weather category)

§ (airPollution, waterPollution, pollenConcentration) (for environment category)
§ (asthmaAttack, bumpedPatient, fallenPatient, heartAttack) (for health category)
§ (suspiciousAction, robbery, assault) (for security category)

o Optional
• location : Location of alert represented by a GeoJSON geometry.

o Attribute type: geo:json.
o Normative References: rfc7946
o Mandatory if address is not present

• address : Civic address of Alert
o Attribute type: Address
o Mandatory if location is not present.

• dateObserved : The date and time the observation of the alert in ISO8601 UTC format.
o Attribute type: DateTime.
o Normative References: ISO8601
o Mandatory

• validFrom : The start date of validity of the alert in ISO8601 UTC format.
o Attribute type: DateTime.
o Normative References: ISO8601
o Optional

• validTo : The end date of validity of the alert in ISO8601 UTC format.
o Attribute type: DateTime.
o Normative References: ISO8601
o Optional

• description : A description of alert (e.g. Traffic jam in Paseo de la Reforma. Emergency services at
place).

o Attribute type: Description
o Optional

• alertSource : reference to the source of the alert. For example, it could be a user of an application, a
device, or a service.

o Attribute type: Text or URL
o Mandatory.

• data : used to carry additional data for the alert.
o Attribute type: StructuredValue
o Optional.

• severity : define the level of gravity of a given alert.
o Attribute type: Text
o Allowed values:

D2.4: Reference Data Models do Data Intensive and IoT based Smart City,
Smart Health and Smart Security Applications (V2.0)

© SmartSDK Consortium 2016-2018 Page 25 of 73

§ (informational, low, medium, high, critical)
o Optional.

è Use in Smart City

{
 "id": "Alert:1",
 "type": "Alert",
 "category": "traffic",
 "subCategory": "trafficJam",
 "severity": "high",
 "location": {
 "type": "Point",
 "coordinates": [
 -3.712247222222222,
 40.423852777777775
]
 },
 "dateObserved": "2017-01-02T09:25:55.00Z",
 "description": "The road is completely blocked for 3kms",
 "alertSource": "https://account.lab.fiware.org/users/8"
}

è Use in Smart Security

{
 "id": "VisualEvent123",
 "type": "Alert",
 "category": "traffic",
 "subCategory": "carAccident",
 "location": {
 "type": "Point",
 "coordinates": [-3.712247222222222, 40.423852777777775]
 },
 "dateObserved": "2017-04-25T09:25:55.00Z",
 "description": "Car collision",

 "alertSource": "https://account.lab.fiware.org/users/8"
 "data": {
 "videoURL": "www.smartsecurity.com/video123.mp4",
 "initialFrame": 80,
 "finalFrame": 120
 },
 "severity" : "high"

}

è Use in Smart Health

Example project A. Risk of fall application.

At	this	stage	of	the	project,	it	is	not	being	considered	to	integrate	notification	support	on	this	
application.

D2.4: Reference Data Models do Data Intensive and IoT based Smart City,
Smart Health and Smart Security Applications (V2.0)

© SmartSDK Consortium 2016-2018 Page 26 of 73

Example	project	B.	Heart	rate	monitoring	and	IoT	feedback	application.

{
 "id": "health-notification-1",
 "type": "Alert",
 "alertType": "Health report",
 "eventObserved": "High blood pressure",
 "dateTime": "2017-04-25T09:25:55.00Z",
 "refuser":"http://2001.23.13.1:1234/user/1",
 "refDevice": "Sphygmomanometer",
 "data": {
 "bloodPressure": 130
 },
 "severity" : [0, 5],
 "severityValue": 4.5
}

Example	project	C.	Rehabilitation	monitoring.

This	application	does	not	use	alerts.

3.1.2.2 Questionnaire

This data model was originally designed to cover qualitative feedback required in the health
application; for example, to collect clinician observation / evaluation after a physical test is
performed1. However, due a potential use in other domains of interest, we decided to generalize it.
The model is part of a three layer-elements: (1) Questionnaire; a root source that concentrate a
collection of questions, (2) Question; a specific sentence that request an input, and (3) Answer; a
specific input to reply a specific question. Where a Questionnaire entity is allowed to be connected to
a number of Question entities, as a Question is allowed to be connected to a number of Answers.
The model allows the user to develop a questionnaire based on a predefined set of questions or the
inclusion of new questions into a questionnaire. Restriction on the entity attributes facilitate the
appropriate management of the creation of entities. For instance, the population of Answer's entities
strictly depend on the pre-instanced Question.
In context of the physical test scenario, a questionnaire is created by integrating questions related to
the participant / patient performance. For instance: Did the participant/patient required assistance when
performing the test? Did the participant / patient followed directions as requested? and so on. Thus,
once a physical test has concluded, the mobile phone application may trigger a survey including
respective questionnaire’ questions in order for the observer to provide respective answers.
This model has been implemented based to cover the need of collecting qualitative feedback after
controlled physical test are performed. Thus, no model has being referenced.

Data Model:

1 https://github.com/netzahdz/oHealth-Context/tree/master/schemas/Questionnaire

D2.4: Reference Data Models do Data Intensive and IoT based Smart City,
Smart Health and Smart Security Applications (V2.0)

© SmartSDK Consortium 2016-2018 Page 27 of 73

• id : Unique identifier.
o Mandatory.

• type : Entity type. It must be equal to Questionnaire.
o Mandatory.

• questionnaireType : Unique value to contextualize a test.
o Attribute type: string.
o Allowed values: The parameter is open to any descriptor that might bring a significant

meaning.
o Mandatory.

• refQuestion : List of questions included into the questionnaire.
o Attribute type: Question.
o Mandatory.

• description : A brief description regarding the purpose of the questionnaire.
o Attribute type: string.
o Mandatory.

• dateModified : Last entity's update timestamp.
o Attribute type: DateTime.
o Mandatory.

Example	of	use:
{
 "id": "ffffffffff9cbbf4465f0ef30033c587-questionnaire-7118",
 "type": "Questionnaire",
 "questionnaireType": "Timed Up and Go",
 "refQuestion": ["ffffffffff9cbbf4465f0ef30033c587-question-7118",
"ffffffffff9cbbf4465f0ef30033c587-question-7119", "ffffffffff9cbbf4465f0ef30033c587-
question-7120"],
 "description": "Simple test used to assess a person's mobility.",
 "dateModified": "2017-01-18T20:45:42.697Z"
}

3.1.2.3 Questionnaire/Question

A sentence worded or expressed to provide an inquiry, as elaborated in previous section 3.1.2.2.

Data Model:
• id : Unique identifier.

o Mandatory.
• type : Entity type. It must be equal to Question.

o Mandatory.
• refQuestionnaire : Reference to a questionnaire.

o Attribute type: string.
o Mandatory.

• category : A unique category value to specify the domain of the question.
o Attribute type: string
o Allowed value: (health). Please note that other option values can be included.
o Mandatory.

• value : A single question written to provide specific information.
o Attribute type: string.
o Mandatory

• language : Language in which the questions is written.
o Attribute type: string.
o Allowed values: (eng, es, etc., and those included into the ISO: 639-4:2010).
o Mandatory.

D2.4: Reference Data Models do Data Intensive and IoT based Smart City,
Smart Health and Smart Security Applications (V2.0)

© SmartSDK Consortium 2016-2018 Page 28 of 73

• dateModified : Last entity's update timestamp.
o Attribute type: DateTime.
o Mandatory.

Example of use:
{
 "id": "ffffffffff9cbbf4465f0ef30033c587-question-7118",
 "type": "Question",
 "refQuestionnaire": "ffffffffff9cbbf4465f0ef30033c587-questionnaire-7118",
 "category": "health",
 "value": "Did the participant require physical assistance to perform the test?",
 "language": "en",
 "dateModified": "2017-01-18T20:45:42.697Z"
}

3.1.2.4 Questionnaire/Answer

A sentence worded or expressed to provide an inquiry, as elaborated in previous section 3.1.2.2.

Data Model:

• id : Unique identifier.
o Mandatory.

• type : Entity type. It must be equal to Answer.
o Mandatory.

• refQuestion : Reference to a Question.
o Attribute type: string.
o Mandatory.

• refUser : Reference to the actual User sheltered by an independent service.
o Attribute type: string.
o Mandatory.

• answer : Information given to answer respective question.
o Attribute type: string.
o Mandatory.

• dateModified : Last entity's update timestamp.
o Attribute type: DateTime.
o Mandatory.

Example of use:
{
 "id": "ffffffffff9cbbf4465f0ef30033c587-question-7118",
 "type": "Answer",
 "refQuestion": "ffffffffff9cbbf4465f0ef30033c587-question-7118",
 "refUser": "http://207.249.127.162:1234/users/1",
 "answer": "true",
 "dateModified": "2017-01-18T20:45:42.697Z"
}

D2.4: Reference Data Models do Data Intensive and IoT based Smart City,
Smart Health and Smart Security Applications (V2.0)

© SmartSDK Consortium 2016-2018 Page 29 of 73

3.2 Data models required by scenario

3.2.1 Smart Health

Smart health data-model consists of a data structure designed to bring a meaningful interpretation of
data by reducing its complexity through a standardized set of schemas. It aims to support writing
applications that can address mobile sensor data for health.

3.2.1.1 Reused data models

The Smart Health scenario does not reuse any existing FIWARE data model.

3.2.1.2 New data models

This model has been inspired by the already accepted open source data model for health: Open Mobile
Health [5], which consist on a set of tools and specifications designed to handle medical data.

3.2.1.2.1 MotorPhysicalTest

This model represents the sensor data collected while the participant carried / worn some sensors
during the execution of a physical test. The structure allows the consideration of a variety of
multisensory devices providing detailed description from each sensor embedded into a device. Thus,
all sensor data could be referenced to its respective source of data producer.

Although, this model does not integrate any of the Open Mobile Health schemas defined within the
model, it has been inspired by the aforementioned project by following respective design principles.

Data Model:

• id : Entity's unique identifier which must follow a specific format (i.e., <DEVICE UNIQUE ID>-
<TEST NUMBER>; without blank spaces in between).

o Attribute type: Identifier.
o Mandatory.

• type : Entity type. It must be equal to MotorPhysicalTest.
o Attribute type: Text.
o Mandatory.

• testType : Name of physical test.
o Attribute type: Text.
o Allowed values: One of the following of any other meaningful to the application.

§ Timed Up and Go, 30 second sit to stand test, 4-Stage Balance Test.
o Mandatory.

• subCategoryTestType : This field helpd to specify testType value, by allowing to provide a specific
subcategory if needed.

o Attribute type: Text.
o Allowed values: One of the following of any other meaningful to the application.

§ Side by Side, Semi-Tandem, Tandem (Full), Single-Leg Stance.
o Optional.

• refUser : Reference to the actual User, sheltered by an independent service.
o Attribute type: Text.
o Mandatory.

• refDevice : Reference to the device(s) that consist on a collection of sensors.
o Attribute type: Device.
o Mandatory.

• configuration : Description to enrich provided information along the Device references. This attribute is
intended to be a dictionary of properties which capture parameters related with the test's design.

o Attribute type: StructuredValue.
o Optional.

D2.4: Reference Data Models do Data Intensive and IoT based Smart City,
Smart Health and Smart Security Applications (V2.0)

© SmartSDK Consortium 2016-2018 Page 30 of 73

• dateTestStarted : Timestamp to denotes when the test started.
o Attribute type: DateTime.
o Mandatory.

• dateTestEnded : Timestamp to denotes when the test ended.
o Attribute type: DateTime.
o Mandatory.

Example project A. Risk of fall application.
{
 "id": "ffffffffff9cbbf4465f0ef30033c587-7118",
 "type": "MotorPhysicalTest",
 "testType": "Timed Up and Go",
 "refUser": "http://207.249.127.162:1234/users/1",
 "refDevice": [
 "device-9845A",
 "device-9845B",
 "device-9845C"
],
 "configuration": {
 "relationship": "device-limbs",
 "data":[
 {
 "device": "device-9845A",
 "position": "right-leg"
 },
 {
 "device": "device-9845B",
 "position": "left-leg"
 },
 {
 "device": "device-9845C",
 "position": "lower-back"
 }
]
 },
 "dateTestStarted": "2017-01-18T20:45:58.447Z",
 "dateTestEnded": "2017-01-18T20:45:42.697Z"
}

Example project B. Heart rate monitoring and IoT feedback application.

This application does not require to build on respective data model schema.

Example project C. Rehabilitation application.

This application does not make use of this data model.

3.2.2 Smart City

In this scenario a set of new data models have been proposed. Moreover, we have reused the existing
data model from FIWARE to send data of air quality, devices and private vehicles.

3.2.2.1 Reused data models

The Smart City application scenario reuses the following FIWARE Data Models:

D2.4: Reference Data Models do Data Intensive and IoT based Smart City,
Smart Health and Smart Security Applications (V2.0)

© SmartSDK Consortium 2016-2018 Page 31 of 73

3.2.2.1.1 AirQualityObserved

Data Model [3][4]

• id : Unique identifier.
• type : Entity type. It must be equal to AirQualityObserved.
• dateModified : Last update timestamp of this entity.

o Attribute type: DateTime
o Optional

• dateCreated : Entity's creation timestamp.
o Attribute type: DateTime
o Optional

• location : Location of the air quality observation represented by a GeoJSON geometry.
o Attribute type: geo:json.
o Normative References: https://tools.ietf.org/html/rfc7946
o Mandatory if address is not defined.

• address : Civic address of the air quality observation. Sometimes it corresponds to the air quality station
address.

o Normative References: https://schema.org/address
o Mandatory if location is not present.

• dateObserved : The date and time of this observation in ISO8601 UTCformat. It can be represented by an
specific time instant or by an ISO8601 interval.

o Attribute type: DateTime or an ISO8601 interval represented as Text.
o Mandatory

• source : A sequence of characters giving the source of the entity data.
o Attribute type: Text or URL
o Optional

• refDevice : A reference to the device(s) which captured this observation.
o Attribute type: Reference to an entity of type Device
o Optional

• refPointOfInterest : A reference to a point of interest (usually an air quality station) associated to this
observation.

o Attribute type: Reference to an entity of type PointOfInterest
o Optional

• measurand : An array of strings containing details (see format below) about each air quality measurand
observed.

o Attribute type: List of Text.
o Allowed values: Each element of the array must be a string with the following format (comma

separated list of values): <measurand>, <observedValue>, <unitcode>, <description>, where:
§ measurand : corresponds to the chemical formula (or mnemonic) of the measurand, ex.

CO.
§ observedValue : corresponds to the value for the measurand as a number.
§ unitCode : The unit code (text) of measurement given using the UN/CEFACT Common

Code (max. 3 characters). For instance, GP represents milligrams per cubic meter and
GQ represents micrograms per cubic meter.

§ description : short description of the measurand.
§ Examples: "CO,500,GP,Carbon Monoxide" "NO,45,GQ,Nitrogen Monoxide"

"NO2,69,GQ,Nitrogen Dioxide" "NOx,139,GQ,Nitrogen oxides" "SO2,11,GQ,Sulfur
Dioxide"

o Mandatory
• In order to enable a proper management of the historical evolution of the concentrations of the different

pollutants, for each element described by the measurand array list there MAY be an attribute which name
MUST be exactly equal to the measurand name described on the measurand array. The structure of such
an attribute will be as follows:

o Attribute name: Equal to the name of the measurand, for instance CO.
o Attribute type: Number
o Attribute value: Exactly equal (same unit of measurement) to the value provided in the

measurand array.

D2.4: Reference Data Models do Data Intensive and IoT based Smart City,
Smart Health and Smart Security Applications (V2.0)

© SmartSDK Consortium 2016-2018 Page 32 of 73

o Attribute metadata:
§ timestamp : optional timestamp for the observed value in ISO8601 format. It can be

ommitted if the observation time is the same as the one captured by the dateObserved
attribute at entity level.

§ Type: DateTime

Example of use:
{
 "id":"CDMX-AmbientObserved-484150020109",
 "type":"AirQualityObserved",
 "address": {
 "type": "StructuredValue",
 "value": {
 "addressCountry": "MX",
 "addressLocality": "Ciudad de México",
 "streetAddress": "Acolman"
 }
 },
 "dateObserved":{
 "type":"DataTime",
 "value":"2016-03-14T17:00:00-05:00"
 },
 "location": {
 "type": "geo:json",
 "value": "19.431768, -99.122984"
 },
 "source":{
 "type":"text",
 "value":"http://www.aire.cdmx.gob.mx/"
 },
 "temperature":{
 "type":"text",
 "value":"12.2"
 },
 "relativeHumidity":{
 "type":"text",
 "value":"0.54"
 },
 "measurand": {
 "type":"text",
 "value": [
 "CO, 500, PPM, Carbon Monoxide",
 "03, 45, PPB, Nitrogen Monoxide",
 "NO2, 69, PPB, Nitrogen Dioxide",
 "SO2, 11, PPB, Sulfur Dioxide",
 "PM10, 139, GQ, Particle Pollution"
]
 },
 "CO":{
 "type":"number",
 "value":"500"
 },
 "O3":{
 "type":"number",
 "value":"45"
 },
 "NO2":{
 "type":"number",
 "value":"69"
 },
 "SO2":{

D2.4: Reference Data Models do Data Intensive and IoT based Smart City,
Smart Health and Smart Security Applications (V2.0)

© SmartSDK Consortium 2016-2018 Page 33 of 73

 "type":"number",
 "value":"11"
 },
 "PM10":{
 "type":"number",
 "value":"139"
 }

}

3.2.2.1.2 Public Vehicle Model

Data model [3][4]:

• id: Entity's unique identifier.
• name: Name given to this vehicle model.

o Normative references: https://schema.org/name
o Mandatory

• description: Vehicle's model description
o Normative references: https://schema.org/description
o Optional

• brandName: Vehicle's brand name.
o Attribute type: Text
o See also: https://schema.org/brand
o Mandatory

• modelName: Vehicle's model name.
o Attribute type: Text
o See also: https://schema.org/model
o Mandatory

• passengersTotal: The total number of passenger that the vehicle can transport (including the driver).
o Attribute type: Number
o Optional

• fuelType: The type of fuel suitable for the engine or engines of the vehicle.
o Normative references: https://schema.org/fuelType
o Allowed values: (One of the followings)

§ gasoline
§ petrol(unleaded)
§ petrol(leaded)
§ petrol
§ diesel
§ electric
§ hydrogen
§ lpg
§ autogas
§ cng
§ biodiesel
§ ethanol
§ hybrid electric/petrol
§ hybrid electric/diesel
§ other

• fuelConsumption: The amount of fuel consumed for traveling a particular distance or temporal duration
with the given vehicle (e.g. liters per 100 km).

o Normative references: https://schema.org/fuelConsumption
o Default unit: liters per 100 kilometer
o Optional

• height: Vehicle's height.
o Normative references: https://schema.org/height

D2.4: Reference Data Models do Data Intensive and IoT based Smart City,
Smart Health and Smart Security Applications (V2.0)

© SmartSDK Consortium 2016-2018 Page 34 of 73

o Optional
• width: Vehicle's width.

o Normative references: https://schema.org/width
o Optional

• depth: Vehicle's depth.
o Normative references: https://schema.org/depth
o Optional

• weight: Vehicle's weight.
o Normative references: https://schema.org/weight
o Optional

• dateModified: Last update timestamp of this entity.
o Attribute type: DateTime
o Optional

• dateCreated: Creation timestamp of this entity.
o Attribute type: DateTime
o Optional

Example of use:
{
 "id": "publicVehicleModel001"
 "name": "vehicleName",
 "brandName": "vehicleBrandName",
 "modelName": "vehicleModelName",
 "passengersTotal": 65,
 "fuelType": "diesel"
}

3.2.2.1.3 WeatherObserved

Data model [3][4]:

• id : Unique identifier.
• type : Entity type. It must be equal to WeatherObserved.
• dateModified : Last update timestamp of this entity.

o Attribute type: DateTime
o Optional

• dateCreated : Entity's creation timestamp.
o Attribute type: DateTime
o Optional

• name : Name given to the weather observed location.
o Normative References: https://schema.org/name
o Optional

• location : Location of the weather observation represented by a GeoJSON geometry.
o Attribute type: geo:json.
o Normative References: https://tools.ietf.org/html/rfc7946
o Mandatory if address is not defined.

• address : Civic address of the weather observation. Sometimes it corresponds to a weather station
address.

o Normative References: https://schema.org/address
o Mandatory if location is not present.

• dateObserved : The date and time of this observation in ISO8601 UTCformat. It can be represented by an
specific time instant or by an ISO8601 interval.

o Attribute type: DateTime or an ISO8601 interval represented as Text.
o Mandatory

D2.4: Reference Data Models do Data Intensive and IoT based Smart City,
Smart Health and Smart Security Applications (V2.0)

© SmartSDK Consortium 2016-2018 Page 35 of 73

• source : A sequence of characters giving the source of the entity data.
o Attribute type: Text or URL
o Optional

• refDevice : A reference to the device(s) which captured this observation.
o Attribute type: Reference to an entity of type Device
o Optional

• refPointOfInterest : A reference to a point of interest (usually a weather station) associated to this
observation.

o Attribute type: Reference to an entity of type PointOfInterest
o Optional

• weatherType : The observed weather type. It is represented by a comma separated list of weather
statuses, for instance overcast, lightRain. A proposed mapping for Spanish terms can be found here.

o Attribute type: Text
o Allowed values: A combination of (clearNight,sunnyDay, slightlyCloudy, partlyCloudy, mist,

fog, highClouds, cloudy, veryCloudy, overcast, lightRainShower, drizzle, lightRain,
heavyRainShower, heavyRain, sleetShower, sleet, hailShower, hail, shower, lightSnow, snow,
heavySnowShower, heavySnow, thunderShower, thunder) or any other extended value.

o Optional
• dewPoint : The dew point encoded as a number.

o Attribute type: Number
o Default unit: Celsius degrees.
o See also: https://en.wikipedia.org/wiki/Dew_point
o Optional

• visibility : Visibility reported.
o Attribute type: Text
o Allowed values: One of (veryPoor, poor, moderate, good, veryGood, excellent)
o Optional

• temperature : Air's temperature observed.
o Attribute type: Number
o Default unit: Degrees centigrades.
o Attribute metadata:

§ timestamp : optional timestamp for the observed value. It can be ommitted if the
observation time is the same as the one captured by the dateObserved attribute at entity
level.

o Optional
• relativeHumidity : Air's relative humidity observed (percentage, expressed in parts per one).

o Attribute type: Number
o Allowed values: A number between 0 and 1.
o Attribute metadata:

§ timestamp : optional timestamp for the observed value. It can be ommitted if the
observation time is the same as the one captured by the dateObserved attribute at entity
level.

o Optional
• precipitation : Precipitation level observed.

o Attribute type: Number
o Default unit: Liters per square meter.
o Attribute metadata:

§ timestamp : optional timestamp for the observed value. It can be ommitted if the
observation time is the same as the one captured by the dateObserved attribute at entity
level.

o Optional
• windDirection : The wind direction expressed in decimal degrees compared to geographic North

(measured clockwise), encoded as a Number.
o Attribute type: Number
o Default unit: Decimal degrees
o Attribute metadata:

§ timestamp : optional timestamp for the observed value. It can be ommitted if the

D2.4: Reference Data Models do Data Intensive and IoT based Smart City,
Smart Health and Smart Security Applications (V2.0)

© SmartSDK Consortium 2016-2018 Page 36 of 73

observation time is the same as the one captured by the dateObserved attribute at entity
level.

o Optional
• windSpeed : The observed wind speed in m/s, encoded as a Number.

o Attribute type: Number
o Default unit: meters per second
o Attribute metadata:

§ timestamp : optional timestamp for the observed value. It can be ommitted if the
observation time is the same as the one captured by the dateObserved attribute at entity
level.

o Optional
• atmosphericPressure : The atmospheric pressure observed measured in Hecto Pascals.

o Attribute type: Number
o Default unit: Hecto Pascals
o Attribute metadata:

§ timestamp : optional timestamp for the observed value. It can be ommitted if the
observation time is the same as the one captured by the dateObserved attribute at entity
level.

o Optional
• pressureTendency : Is the pressure rising or falling? It can be expressed in quantitative terms or

qualitative terms.
o Attribute type: Text or Number
o Allowed values, if expressed in quantitative terms: one Of (raising, falling, steady)
o Optional

• solarRadiation : The solar radiation observed measured in Watts per square meter.
o Attribute type: Number
o Default unit: Watts per square meter
o Attribute metadata:

§ timestamp : optional timestamp for the observed value. It can be ommitted if the
observation time is the same as the one captured by the dateObserved attribute at entity
level.

o Optional
• illuminance : The illuminance observed measured in lux (lx) or lumens per square metre (cd·sr·m−2).

o Attribute type: Number
o Default unit: Lux
o Attribute metadata:

§ timestamp : optional timestamp for the observed value. It can be ommitted if the
observation time is the same as the one captured by the dateObserved attribute at entity
level.

o Optional

Example of use:
{
 "id": "Spain-WeatherObserved-2422-2016-11-30T08:00:00",
 "type": "WeatherObserved",
 "address":
 {
 "addressLocality": "Valladolid",
 "addressCountry": "ES"
 },
 "atmosphericPressure": 938.9,
 "dataProvider": "TEF",
 "dateObserved": "2016-11-30T07:00:00.00Z",
 "location":

D2.4: Reference Data Models do Data Intensive and IoT based Smart City,
Smart Health and Smart Security Applications (V2.0)

© SmartSDK Consortium 2016-2018 Page 37 of 73

 {
 "type": "Point",
 "coordinates":
 [
 -4.754444444,
 41.640833333
]
 },
 "precipitation": 0,
 "pressureTendency": 0.5,
 "relativeHumidity": 1,
 "source": "http://www.aemet.es",
 "stationCode": "2422",
 "stationName": "Valladolid",
 "temperature": 3.3,
 "windDirection": -45,
 "windSpeed": 2,
 "illuminance": 1000
}

3.2.2.1.4 TrafficFlowObserved

Data model [3][4]:

• id : Unique identifier.
• type : Entity type. It must be equal to TrafficFlowObserved.
• location : Location of this traffic flow observation represented by a GeoJSON geometry.

o Attribute type: geo:json.
o Normative References: https://tools.ietf.org/html/rfc7946
o Mandatory if refRoadSegment is not present.

• address : Civic address of this traffic flow observation.
o Normative References: https://schema.org/address
o Optional

• refRoadSegment : Concerned road segment on which the observation has been made.
o Attribute type: Reference to an entity of type RoadSegment.
o Mandatory if location is not present.

• dateModified : Last update timestamp of this entity.
o Attribute type: DateTime
o Mandatory

• laneId : Lane identifier.
o Attribute type: Number
o Allowed values: Positive integer starting with 1. Lane identification is done using the

conventions defined by RoadSegment which are based on OpenStreetMap.
o Mandatory

• dateObserved : The date and time of this observation in ISO8601 UTC format. It can be represented by
an specific time instant or by an ISO8601 interval. As a workaround for the lack of support of Orion
Context Broker for datetime intervals, it can be used two separate attributes: dateObservedFrom,
dateObservedTo.

o Attribute type: DateTime or an ISO8601 interval represented as Text.
o Mandatory

• dateObservedFrom : Observation period start date and time. See dateObserved.
o Attribute type: DateTime.
o Optional

• dateObservedTo : Observation period end date and time. See dateObserved.
o Attribute type: DateTime.
o Optional

• dateCreated : Entity's creation timestamp.

D2.4: Reference Data Models do Data Intensive and IoT based Smart City,
Smart Health and Smart Security Applications (V2.0)

© SmartSDK Consortium 2016-2018 Page 38 of 73

o Attribute type: DateTime
o Optional

• name : Name given to this observation.
o Normative References: https://schema.org/name
o Optional

• description : Description of this observation.
o Normative References: https://schema.org/description
o Optional

• intensity : Total number of vehicles detected during this observation period.
o Attribute type: Number. Positive integer.
o Optional

• occupancy : Fraction of the observation time where a vehicle has been occupying the observed laned.
o Attribute type: Number between 0 and 1.
o Optional

• averageVehicleSpeed : Average speed of the vehicles transiting during the observation period.
o Attribute type: Number
o Default unit: Kilometer per hour (Km/h).
o Optional

• averageVehicleLength : Average length of the vehicles transiting during the observation period.
o Attribute type: Number
o Default unit: meter (m)
o Optional

• congested : Flags whether there was a traffic congestion during the observation period in the referred
lane. The absence of this attribute means no traffic congestion.

o Attribute type: Boolean
o Optional

• averageHeadwayTime : Average headway time. Headaway time is the time ellapsed between two
consecutive vehicles.

o Attribute type: Number
o Default unit: second (s)
o Optional

• averageGapDistance : Average gap distance between consecutive vehicles.
o Attribute type: Number
o Default unit: meter (m)
o Optional

• laneDirection : Usual direction of travel in the lane referred by this observation. This attribute is useful
when the observation is not referencing any road segment, allowing to know the direction of travel of the
traffic flow observed.

o Attribute type: Text
o Allowed values: (forward, backward). See RoadSegment.laneUsage for a description of the

semantics of these values.
o Optional

• reversedLane: Flags whether traffic in the lane was reversed during the observation period. The absence
of this attribute means no lane reversion.

o Attribute type: Boolean
o Optional

Example of use:
 {
 "id": "TrafficFlowObserved-Valladolid-osm-60821110",
 "type": "TrafficFlowObserved",
 "laneId": 1,
 "address": {
 "streetAddress": "Avenida de Salamanca",
 "addressLocality": "Valladolid",

D2.4: Reference Data Models do Data Intensive and IoT based Smart City,
Smart Health and Smart Security Applications (V2.0)

© SmartSDK Consortium 2016-2018 Page 39 of 73

 "addressCountry": "ES"
 },
 "location": {
 "type": "LineString",
 "coordinates": [
 [
 -4.73735395519672, 41.6538181849672
],
 [
 -4.73414858659993, 41.6600594193478
],
 [
 -4.73447575302641, 41.659585195093
]
]
 },
 "dateObserved": "2016-12-07T11:10:00/2016-12-07T11:15:00",
 "dateObservedFrom": "2016-12-07T11:10:00",
 "dateObservedTo": "2016-12-07T11:15:00",
 "averageHeadwayTime": 0.5,
 "intensity": 197,
 "occupancy": 0.76,
 "averageVehicleSpeed": 52.6,
 "averageVehicleLength": 9.87,
 "reversedLane": false,
 "laneDirection": "forward"
 }

3.2.2.2 New data models

This section details new FIWARE Data Models developed in the context of the Smart City scenario of
SmartSDK.

3.2.2.2.1 SmartSpot

Smart Spots are devices which provide the the technology which allows users to get access to smart
points of interaction so that they can obtain extra information (infotainment, etc.), provide suggestions
(suggestions mailbox, etc.) or generate new content (co-creation, etc.). The data model contains
resources to configure the interaction service such as the broadcasted URL (typically shortened), the
period between broadcasts, the availability of the service, transmission power depending on the area to
be covered, etc.

This model was born for the necessity of adding bluetooth low energy announcement capabilities to a
specific device, it was modeled in collaboration with the FIWARE Foundation who proposed adopting
an inheritance relationship for the first time in a data model, thanks to this relation the Smart Spot can
extend the Device data model for adding the necessary bluetooth capabilities to the device. In this
kind of relationship, the extended data model derives all his fields to his child. This kind of relation
has many benefits, new data models are able to be defined seamless, this models can be created only
extended the existing ones providing them new capabilities and allowing to the user to create bigger
catalog of specialized models, on the other hand, not all is a bed of roses, for being able to use all the
benefits of this new capabilities, inheritance rules must to adopted by the current data models,
nowadays all the data models contains a huge number of optionals fields that use to break the Liskov
substitution principle, also using inheritance in this way, huge data models can be generated, this data
models can be difficult to handle by users and new developers. A good solution for this would be split
the current data models in more specialized entities, this entities could contains only the necessary

D2.4: Reference Data Models do Data Intensive and IoT based Smart City,
Smart Health and Smart Security Applications (V2.0)

© SmartSDK Consortium 2016-2018 Page 40 of 73

fields for its specialized behaviour, for sure, we would have many more entities, but all of the would
be more reusable.

Data model:

• id : Unique identifier.
• type : Entity type. It must be equal to SmartSpot.
• announcedUrl : URL broadcasted by the device.

o Attribute type: URL
o Mandatory

• signalStrenght : Signal strength to adjust the announcement range.
o Attribute type: Text
o Allowed values: "lowest", "medium" or "highest".
o Mandatory

• bluetoothChannel : Bluetooth channels where to transmit the announcement.
o Attribute type: Text
o Allowed values: "37", "38", "39", "37,38", "38,39", "37,39" or "37,38,39".
o Mandatory

• areaCoveredRadius : Radius of the spot coverage area in meters.
o Attribute Type: Number
o Default unit: Meters.
o Optional

• announcementPeriod : Period between announcements.
o Attribute Type: Number
o Default unit: Milliseconds.
o Mandatory

• availability: Specifies the functionality intervals in which the announcements will be sent. The format is
an structured value which must contain a subproperty per each required functionality interval, indicating
when the functionality is active. If nothing specified (or null) it will mean that the functionality is always
on. The syntax must be conformant with schema.org openingHours specification. For instance, a service
which is only active on dayweeks will be encoded as "availability": "Mo,Tu,We,Th,Fr,Sa 09:00-20:00".

o Attribute type: StructuredValue
o Mandatory. It can be null.

• refSmartPointOfInteraction : Reference to the Smart Point of Interaction which includes this Smart Spot.
o Attribute type: Reference to an entity of type SmartPointOfInteraction
o Optional

Example of use:
{
 "id": "SSPOT-F94C51A295D9",
 "type": "SmartSpot",
 "announcedUrl" : "https://hpoi.info/325531235437",
 "signalStrenght": "high",
 "bluetoothChannel": "37-38-39",
 "areaCoveredRadius": 30,
 "announcementPeriod": 500,
 "availability": "Tu,Th 16:00-20:00",
 "refSmartPointOfInteraction": "SPOI-ES-4326"
}

3.2.2.2.2 SmartPointOfInteraction

A Smart Point of Interaction defines a place with technology to interact with users, for example,
through Beacon technology from Apple, Eddystone/Physical-Web from Google or other proximity-

D2.4: Reference Data Models do Data Intensive and IoT based Smart City,
Smart Health and Smart Security Applications (V2.0)

© SmartSDK Consortium 2016-2018 Page 41 of 73

based interfaces. Since the interactive area could be composed by more than one device providing the
technology, this model encompasses a group of SmartSpot devices.

The data model includes information regarding the area/surface covered by the technology (i.e., the
area covered by Bluetooth Low Energy-based Beacon), a way to specify the functionality intervals
(i.e. when interactive points are available) and the link to the multimedia resource where users will
interact (i.e. Web Apps, etc.). Additionally, the data model may reference to another NGSI entity such
as a Parking, a Point of Interest (POI), etc. with enriched interaction provided by this Smart Point of
Interest.

Data model:

• id : Unique identifier.
• type : Entity type. It must be equal to SmartPointOfInteraction.
• category : Defines the type of interaction.

o Attribute type: List of Text
o Allowed values: information, entertainment, infotainment, co-creation or any other extended

value defined by the application.
o Mandatory

• areaCovered : Defines the area covered by the Smart Point of Interaction using geoJSON format.
o Attribute type: geo:json.
o Normative References: https://tools.ietf.org/html/rfc7946
o Optional

• applicationUrl : This field specifies the real URL containing the solution or application (information, co-
creation, etc) while the SmartSport 'announcedUrl' field specifies the broadcasted URL which could be
this same URL or a shortened one.

o Attribute type: URL
o Mandatory

• availability: Specifies the time intervals in which this interactive service is available, but this is a general
information while Smart Spots have their own real availability in order to allow advanced configurations.
The format is an structured value which must contain a subproperty per each required functionality
interval, indicating when the functionality is active. If nothing specified (or null) it will mean that the
functionality is always on. The syntax must be conformant with schema.org openingHours specification.
For instance, a service which is only active on dayweeks will be encoded as "availability":
"Mo,Tu,We,Th,Fr,Sa 09:00-20:00".

o Attribute type: StructuredValue
o Mandatory. It can be null.

• refRelatedEntity : List of entities improved with this Smart Point of Interaction. The entity type could be
any such as a “Parking”, “Point of Interest”, etc.

o Attribute type: List of entities.
o Optional

• refSmartSpot : References to the “Smart Spot” devices which are part of the Smart Point of Interaction.
o Attribute type: Reference to one or more entity of type SmartSpot
o Optional

Example of use:
{
 "id": "SPOI-ES-4326",
 "type": "SmartPointOfInteraction",
 "category": ["co-creation"],
 "areaCovered": {
 "type": "Polygon",
 "coordinates": [[
 [25.774, -80.190],
 [18.466, -66.118],
 [32.321, -64.757],

D2.4: Reference Data Models do Data Intensive and IoT based Smart City,
Smart Health and Smart Security Applications (V2.0)

© SmartSDK Consortium 2016-2018 Page 42 of 73

 [25.774, -80.190]
]]
 },
 "applicationUrl": "https://www.fiware.org",
 "availability": "Tu,Th 16:00-20:00",
 "refRelatedEntity": "POI-PlazaCazorla-3123",
 "refSmartSpot": ["SSPOT-F94C58E29DD5", "SSPOT-F94C53E21DD2", "SSPOT-F94C51A295D9"]
}

3.2.2.2.3 Service Network

The Service Network defines a set of data models with the main purpose of collecting information
about the trips made by users of the public transportation services. This way, it is possible to map the
user's trips and collect useful information regarding their habits when using public transportation, such
as the most used stops, the most used types of transports, and other useful metrics.

The data models described below are the Trip, Stop, Route and Agency entities, which interact in a
hierarchical way in order to map the user's trips of a service network.

These data models were defined based on the General Transit Feed Specification [6], which is a
standard that defines a common format for public transportation schedules and associated geographic
information, based on CSV files. It is one of the most popular and used standards for public
transportation [10], with many entities already using it to describe their services. This means there is a
lot of data already available, and there are many applications developed using this standard. These
facts lead to the adoption of this standard as the base of the models defined here.

Agency

This entity models a particular public transport agency, including all properties which are common to
multiple trip instances belonging to such model. An agency refers to a company or entity which
provides a public transportation service.

Data	model:

• id: Entity's unique identifier.
• Type: Entity type. It must be equal to Agency.
• name: Name given to this agency.

o Normative References: https://schema.org/name
o Mandatory

• url: URL which provides information about this agency.
o Normative references: https://schema.org/url
o Optional

• timezone: Timezone where this agency belongs to.
o Attribute type: Text
o Optional

Example of use:
{
 "id": "CC",
 "type": "Agency",
 "name": "Corredores Concesionados"
}

Route

D2.4: Reference Data Models do Data Intensive and IoT based Smart City,
Smart Health and Smart Security Applications (V2.0)

© SmartSDK Consortium 2016-2018 Page 43 of 73

This entity models a particular public transport route, including all properties which are common to
multiple trip instances belonging to such model. A route is a way to identify a journey that is regularly
made by a given transport in an agency.

Data model:

• id: Entity's unique identifier.
• type: Entity type. It must be equal to Route.
• short_name: Short name of a route, often a short and abstract identifier like "7", "34", or "Blue" that

riders use to identify a route.
o Normative References: https://schema.org/name
o Mandatory

• long_name: Full name of a route, more descriptive than the route_short_name and often include the
route's destination or stop

o Normative References: https://schema.org/name
o Mandatory

• description: Description about this route.
o Attribute type: https://schema.org/Text
o Optional

• type: Describes the type of transportation used on a route
o Attribute type: Number
o Allowed values:

§ 0: Tram, Streetcar, Light rail. Any light rail or street level system within a metropolitan
area.

§ 1: Subway, Metro. Any underground rail system within a metropolitan area.
§ 2: Rail. Used for intercity or long-distance travel.
§ 3: Bus. Used for short- and long-distance bus routes.
§ 4: Ferry. Used for short- and long-distance boat service.
§ 5: Cable car. Used for street-level cable cars where the cable runs beneath the car.
§ 6: Gondola, Suspended cable car. Typically used for aerial cable cars where the car is

suspended from the cable.
§ 7: Funicular. Any rail system designed for steep inclines.

o Mandatory
• color: Color that corresponds to the route. The color must be provided as a six-character hexadecimal

number, for example, 00FFFF.
o Attribute type: Text
o Optional

• url: The URL of a web page about that particular route
o Normative references: https://schema.org/url
o Optional

Example of use:
{
 "id": "routeID",
 "type": "Route",
 "short_name": "SAUSA"
 "long_name": "Metro Tacubaya - La Valenciana"
 "type": 3
}

Stop
This entity models a particular public transport stop, including all properties which are common to
multiple trip instances belonging to such model. A stop is defined by its geographical coordinates and

D2.4: Reference Data Models do Data Intensive and IoT based Smart City,
Smart Health and Smart Security Applications (V2.0)

© SmartSDK Consortium 2016-2018 Page 44 of 73

its type, and represents a place where a given type of public transports stops for boarding and
unloading passengers.

Data model:

• id: Entity's unique identifier.
• type: Entity type. It must be equal to Stop.
• code: Number that uniquely identifies the stop for passengers.

o Attribute type: Text
o Optional

• name: Name given to this stop.
o Normative references: https://schema.org/name
o Mandatory

• description: Description of this stop.
o Attribute type: Text
o Optional

• location: Stop location represented by a GeoJSON Point.
o Attribute type: geo_json
o Normative References: https://tools.ietf.org/html/rfc7946
o Mandatory

• location_type: Identifies whether this stop represents a stop or station.
o Attribute type: Number
o Allowed values:

§ 0: Stop. A location where passengers board or disembark from a transit vehicle.
§ 1: Station. A physical structure or area that contains one or more stop.

o Optional
• wheelchairBoarding: Wheelchair accessibility information for the stop.

o Attribute type: Number
o Allowed values:

§ 0: Indicates that there is no accessibility information for the stop.
§ 1: Indicates that at least some vehicles at this stop can be boarded by a rider in a

wheelchair.
§ 2: Wheelchair boarding is not possible at this stop.

o Optional

Example of use:
{
 "id": "stopID",
 "type": "Stop",
 "name": "M. Tacubaya",
 "location": [19.402325646816475,-99.18885111808775]
}

Trip
This entity models a particular trip. A trip consists of one or more segments, which can belong to
different routes within a type of public transport, or even different types of public transports,
belonging to different agencies.

Data model:

• id: Entity's unique identifier.
• type: Entity type. It must be equal to Trip.
• weekdays: The weekdays that this trip refers to.

o Attribute type: List of Text

D2.4: Reference Data Models do Data Intensive and IoT based Smart City,
Smart Health and Smart Security Applications (V2.0)

© SmartSDK Consortium 2016-2018 Page 45 of 73

o Mandatory
• segments: An a array of segments containing details(see list below) about each segment that completes

the trip. Each trip can have one or more segments.
o Attribute type: List
o id: Entity's unique identifier.
o name: Name given to this trip segment.

§ Normative references: https://schema.org/name
§ Mandatory

o headsign: Text that identifies the trip's segment destination to passengers.
§ Atttribute type: Text
§ Optional

o wheelchairAccessible: Wheelchair accessibility information for the trip segment.
§ Attribute type: Number
§ Allowed values:

§ 0: Indicates that there is no accessibility information for the trip.
§ 1: Indicates that the vehicle being used on this particular trip can

accommodate at least one rider in a wheelchair.
§ 2: Indicates that no riders in wheelchairs can be accommodated on this trip.

§ Optional
o bikesAllowed: Bicycle accomodation information for this trip segment

§ Attribute type: Number
§ Allowed values:

§ 0: Indicates that there is no bike information for the trip.
§ 1: Indicates that the vehicle being used on this particular trip can

accommodate at least one bicycle.
§ 2: Indicates that no bicycles are allowed on this trip.

§ Optional
o agency: Agency the trip segment belogs to.

§ Attribute type: Reference to a Agency entity.
§ Mandatory

o route: Route the trip segment belongs to.
§ Attribute type: Reference to a Route
§ Mandatory

o stop_departure: Stop where the trip segment start.
§ Attribute type: Reference to a Stop
§ Mandatory

o stop_arrival: Stop where the trip segment finish.
§ Attribute type: Reference to a Stop
§ Optional

o departure_timestamp: Timestamp which captures when the user started the trip segment. This
value can also appear as a FIWARE TimeInstant

§ Attribute type: Time or ISO8601 (legacy).
§ Mandatory

o arrival_timestamp: Timestamp which captures when the user finished the trip segment. This
value can also appear as a FIWARE TimeInstant

§ Attribute type: Time or ISO8601 (legacy).
§ Optional

Example of use:

{
 "id": "tripID",
 "type": "Trip",
 "weekdays": ["monday", "tuesday"],
 "segments": [
 "segment1":{

D2.4: Reference Data Models do Data Intensive and IoT based Smart City,
Smart Health and Smart Security Applications (V2.0)

© SmartSDK Consortium 2016-2018 Page 46 of 73

 "id": "segmentID",
 "name": "Tacubaya - La Valenciana por Eje 3 Sur",
 "agency": "CC",
 "route": "routeID",
 "stop_departure": "stopID",
 "stop_arrival": "stopID",
 "departure_timestamp": "08:30:11Z",
 "arrival_timestamp":"08:50:30Z"
 }
]
}

AffectedTransitService

This entity model a particular affected transit service, including all properties which can be used to
specify exactly which parts of the public transport network are affected by the alert. This data model is
based on the Realtime Transit Service Alerts[7] that defines a common format for public
transportation service alerts.

Data model:

• id: Entity's unique identifier.
• type: Entity type. It must be equal to AffectedTransitService.
• refAgency: Spcecifies the agency that will be affected. This means that all the agency network will be

affected.
o Attribute type: Reference to an Agency
o Optional

• refRoute: Specifies the particular route that will be affected.
o Attribute type: Reference to a Route
o Mandatory only if no other type of entity is defined

• route_type: Specifies the type of route that will be affected. This means that all toutes of this type will be
affected.

o Attribute type: Number
o Allowed values:

§ 0: Tram, Streetcar, Light rail. Any light rail or street level system within a metropolitan
area.

§ 1: Subway, Metro. Any underground rail system within a metropolitan area.
§ 2: Rail. Used for intercity or long-distance travel.
§ 3: Bus. Used for short- and long-distance bus routes.
§ 4: Ferry. Used for short- and long-distance boat service.
§ 5: Cable car. Used for street-level cable cars where the cable runs beneath the car.
§ 6: Gondola, Suspended cable car. Typically used for aerial cable cars where the car is

suspended from the cable.
§ 7: Funicular. Any rail system designed for steep inclines.

o Mandatory only if no other type of entity is defined
• refTrip: Specifies the particular trip that will be affected

o Attribute type: Reference to Trip
o Mandatory only if no other type of entity is defined

• refStop: Specifies the particular stop that will be affected
o Attribute type: Reference to Stop
o Mandatory only if no other type of entity is defined

Example of use:

{

D2.4: Reference Data Models do Data Intensive and IoT based Smart City,
Smart Health and Smart Security Applications (V2.0)

© SmartSDK Consortium 2016-2018 Page 47 of 73

 "id": "entityID0",
 "type": "AffectedTransitService",
 "refAgency": "agencyID0",
 "refRoute": "routeID001"
}

TransitServiceAlert

This entity model a particular public transport service alert model, including all properties which can
be used to specify a public transport service alert whenever there is a disruption on the public transport
network. This data model is based on the Realtime Transit Service Alerts [7] that defines a common
format for public transportation service alerts.

Data model:

• id: Entity's unique identifier.
• type: Entity type. It must be equal to TransitServiceAlert.
• header: Summary of the alert.

o Attribute type: Text
o Mandatory

• description: A complete description of the alert.
o Attribute type: Text
o Mandatory

• timeRange: The time range that the alert will be active. The time range can refer to one or multiple time
ranges. It's represented as an array of time intervals.

o Attribute type: DateTime or an ISO8601 interval represented as Text.
o Mandatory

• refAffectedTransitService: Specify exactly which parts of the network this alert affects.
o Attribute type: List of references to entities of type AffectedTransitService
o Mandatory

• cause: The cause of the alert. Can only exist one cause for each alert.
o Attribute type: Text
o Allowed Values:

§ Unknown cause
§ Other cause (not represented by any of these option)
§ Technical problem
§ Demonstration
§ Accident
§ Holiday
§ Weather
§ Maintenance
§ Construction
§ Police activity
§ Medical emergency

o Mandatory
• effect: What effect does this problem have on the specified entity. Cal only exist one effect for each alert.

o Attribute type: Text
o Allowed values:

§ No service
§ Reduced service
§ Significant delays
§ Detour
§ Additional service
§ Modified service
§ Stop moved
§ Other effet

D2.4: Reference Data Models do Data Intensive and IoT based Smart City,
Smart Health and Smart Security Applications (V2.0)

© SmartSDK Consortium 2016-2018 Page 48 of 73

§ Unknown effect
o Mandatory

• dateModified: Last update timestamp of this entity.
o Attribute type: DateTime
o Optional

• dateCretated: Creation timestamp of this entity.
o Attribute type: DateTime
o Optional

Example of use:

{
 "id": "Alert0000",
 "type": "Alert",
 "header": "Holiday",
 "description": "Complete description of what will happen",
 "timeRange": [
 [
 2017-04-05T08:15:30+01:00,
 2017-04-06T08:15:30+01:00
],
 [
 2017-04-08T08:15:30+01:00,
 2017-04-09T08:15:30+01:00
]
],
 "refAffectedTransitService": ["entityID0"],
 "cause": "Holiday",
 "effect": "Modified Service"
}

3.2.2.2.4 AeroAllergenObserved

The Aero Allergen Observed model describes information of pollen/aeroallergens provided by a
monitoring station in the Smart City scenario.

The creation of this model comes up from the need to provide additional data of pollen agents that was
originally intended to be described using the AirQualityObserved model. Because of the lack of
attributes related to pollen descriptions in the former model, such as allergen risks and quantitative or
qualitative levels (dependending on the source), it was decided to create a new model to provide a
broader description of pollen/aeroallergens entities.

This entity models aero allergens observed at a given location and related overall allergen risk.

It has been developed based on GSMA. Aero allergens strictly depends on the geographical location.
Common Aero allergens in Europe may be quite different from the ones in US due to the different
biological species. A list of commonly used aero allergens in Europe can be found on polleninfo.org a
web site maintained by the European Aeroallergen Network. A World Health Organization (WHO)
Allergen Nomenclature (covering not only aero transported allergens) is available at
http://www.allergen.org.

Data model:

• id : Unique identifier.
• type : Entity type. It must be equal to AeroAllergenObserved.
• dateModified : Last update timestamp of this entity.

o Attribute type: DateTime

D2.4: Reference Data Models do Data Intensive and IoT based Smart City,
Smart Health and Smart Security Applications (V2.0)

© SmartSDK Consortium 2016-2018 Page 49 of 73

o Optional
• dateCreated : Entity's creation timestamp.

o Attribute type: DateTime
o Optional

• location : Location of the aero allergens observation represented by a GeoJSON geometry.
o Attribute type: geo:json.
o Normative References: https://tools.ietf.org/html/rfc7946
o Mandatory if address is not defined.

• address : Civic address of the aero allergens observation. Sometimes it corresponds to the aero allergens
station address.

o Normative References: https://schema.org/address
o Mandatory if location is not present.

• dateObserved : The date and time of this observation in ISO8601 UTCformat. It can be represented by an
specific time instant or by an ISO8601 interval.

o Attribute type: DateTime or an ISO8601 interval represented as Text.
o Mandatory

• source : A sequence of characters giving the source of the entity data.
o Attribute type: Text or URL
o Optional

• allergenRisk : Overall allergen risk corresponding to the aero allergens observed.
o Attribute type: Text
o Example values defined by the European Aeroallergen Network: (none, low, moderate, high,

veryHigh). As this can be different between countries, regulations or implementations, the set of
allowed values will depend on the reference specification used. It is recommended that
implementations use the same naming conventions as exemplified above (lower case starting
words, camel case when compound terms are used)

o Attribute metadata:
§ referenceSpecification : Specification that must be taken as reference when interpreting

the supplied qualitative value.
• Type: Text or URL
• Mandatory

o Optional
• refDevice : A reference to the device(s) which captured this observation.

o Attribute type: Reference to an entity of type Device
o Optional

Representing aero allergens concentration

To describe the different aero allergens concentrations, for each aero allergens we use an attribute that MUST
refers exactly to the conventional name of the allergen (usually the latin name of the associated plant) to measure
the concentration (usually in grains per cubic meter gr/m3). e.g. alnus to measure the concentration of alnus pollen
(Alder is the common english name for Alnus).

The structure of such an attribute will be as follows:

• Attribute name: Equal to the name of the allergen, for instance alnus. A list of commonly used aero
allergens in Europe can be found on polleninfo.org a web site maintained by the European Aeroallergen
Network. A World Health Organization (WHO) Allergen Nomenclature (covering not only aero
transported allergens) is available at http://www.allergen.org.

• Attribute type: Number
• Attribute value: corresponds to the concentration of the allergen as a number.
• Attribute metadata:

o timestamp : optional timestamp for the observed value in ISO8601 format. It can be omitted if
the observation time is the same as the one captured by the dateObserved attribute at entity level.

§ Type: DateTime
o unitCode : The unit code (text) of measured concentration (usually the unit adopted is grains per

cubic meter: gr/m3).

D2.4: Reference Data Models do Data Intensive and IoT based Smart City,
Smart Health and Smart Security Applications (V2.0)

© SmartSDK Consortium 2016-2018 Page 50 of 73

§ Type: Text
§ Optional

o description : short description of the allergen
§ Type: Text
§ Optional

Representing qualitative levels of aero allergens

To describe the aero allergens qualitative levels, for each aero allergens we use an attribute that MUST refers
exactly to the conventional name of the allergen (usually the latin name of the associated plant) concatenated with
the string _Level, e.g. alnus_Level to measure the qualitative level for a given concentration of alnus pollen.

• Attribute name: Equal to the name of the allergen plus the suffix Level, for instance alnus_Level.
• Attribute type: Text
• Attribute value: Example values defined by the European Aeroallergen Network: (none, low, moderate,

high, veryHigh). As this can be different between countries, regulations or implementations, the set of
allowed values will depend on the reference specification used. It is recommended that implementations
use the same naming conventions as exemplified above (lower case starting words, camel case when
compound terms are used)

• Attribute metadata:
o description : short description of the measurand and its related qualitative level

§ Type: Text
§ Optional

o referenceSpecification : Specification that must be taken as reference when interpreting the
supplied qualitative value.

§ Type: Text or URL
§ Mandatory

Representing allergenicity category of aero allergens

To describe the allergenicity category of aero allergens, for each aero allergens we use an attribute that MUST
refers exactly to the conventional name of the allergen (usually the latin name of the associated plant)
concatenated with the string _Allergenicity, e.g. alnus_Allergenicity to describe the allergenicity level of alnus
pollen.

• Attribute name: Equal to the name of the allergen plus the suffix _Allergenicity, for instance
alnus_Allergenicity.

• Attribute type: Text
• Attribute value: Example values defined by the Spanish Network for Aerobiology: (1, 2, 3, 4). As this can

be different between countries, regulations or implementations, the set of allowed values will depend on
the reference specification used. It is recommended that implementations use the same naming
conventions as exemplified above (lower case starting words, camel case when compound terms are
used)

• Attribute metadata:
o description : short description of the measurand and its related qualitative level

§ Type: Text
§ Optional

o referenceSpecification : Specification that must be taken as reference when interpreting the
supplied qualitative value.

§ Type: Text or URL
§ Mandatory

Example of use:

{

D2.4: Reference Data Models do Data Intensive and IoT based Smart City,
Smart Health and Smart Security Applications (V2.0)

© SmartSDK Consortium 2016-2018 Page 51 of 73

 "id": "AeroAllergenObserved-CDMX-Pollen-Cuajimalpa",
 "type": "AeroAllergenObserved",
 "alnus_Level": "moderate",
 "alnus": 40,
 "alnus_Allergenicity": "3",
 "casuarina_Level": "low",
 "casuarina": 1,
 "casuarina_Allergenicity": "3",
 "allergenRisk": "moderate",
 "address": {
 "addressCountry": "MX",
 "addressLocality": "Ciudad de México",
 "streetAddress": "Colegio Franco-Inglés"
 },
 "dateModified": "2018-02-16T17:24:39.00Z",
 "dateObserved": "2018-02-11T00:00:00.00Z",
 "location": {
 "type": "Point",
 "coordinates": [
 -99.276977,
 19.381877
]
 },
 "source": "http://rema.atmosfera.unam.mx/rema/"
}

3.2.3 Smart Security

3.2.3.1 Reused data models

Smart Security reuse the OffStreetParking, Road, Road Segment, Building and User Context data
models.

3.2.3.1.1 OffStreetParking

The OffStreetParking data model [3][4] is used in the Smart Security application to delimit the
geographic space of the parking lots that are within the of an organization and describe its
characteristics. In addition, this data model allows to reference to another data model that contains the
parking within its area, through the areaServed attribute of this data model. For this reason, we use
areaServed attribute to reference to the organization’s zone that contains the parking lot.

Data Model:

• id : Unique identifier.
• type : Entity type. It must be equal to OffStreetParking.

o dateCreated : Entity's creation timestamp
o Attribute type: DateTime
o Optional

• dateModified : Last update timestamp of this entity
o Attribute type: DateTime
o Optional

• location : Geolocation of the parking site represented by a GeoJSON (Multi)Polygon or Point.
o Attribute type: geo:json.
o Normative References: https://tools.ietf.org/html/rfc7946
o Mandatory if address is not defined.

• address : Registered parking site civic address.
o Normative References: https://schema.org/address
o Mandatory if location is not defined.

D2.4: Reference Data Models do Data Intensive and IoT based Smart City,
Smart Health and Smart Security Applications (V2.0)

© SmartSDK Consortium 2016-2018 Page 52 of 73

• name : Name given to the parking site.
o Normative References: https://schema.org/name
o Mandatory

• category : Parking site's category(ies). The purpose of this field is to allow to tag, generally speaking, off
street parking entities. Particularities and detailed descriptions should be found under the corresponding
specific attributes.

o Attribute type: List of Text
o Allowed values:

§ (public, private, publicPrivate, urbanDeterrentParking, parkingGarage, parkingLot,
shortTerm, mediumTerm, longTerm, free, feeCharged, staffed, guarded, barrierAccess,
gateAccess, freeAccess, forElectricalCharging, onlyResidents, onlyWithPermit,
forEmployees, forVisitors, forCustomers, forStudents, forMembers, forDisabled,
forResidents, underground, ground)

§ The semantics of the forxxx values is that the parking offers specific spots subject to
that particular condition.

§ The semantics of the onlyxxxvalues is that the parking only allows to park on that
particular condition.

§ Other application-specific
o Mandatory

• allowedVehicleType : Vehicle type(s) allowed. The first element of this array MUST be the principal
vehicle type allowed. Free spot numbers of other allowed vehicle types might be reported under the
attribute extraSpotNumber and through specific entities of type ParkingGroup.

o Attribute type: List of Text
o Allowed Values: The following values defined by VehicleTypeEnum, DATEX 2 version 2.3:

§ (agriculturalVehicle, bicycle, bus, car, caravan, carWithCaravan, carWithTrailer,
constructionOrMaintenanceVehicle, lorry, moped, motorcycle,
motorcycleWithSideCar, motorscooter, tanker, trailer, van, anyVehicle)

o Mandatory
• chargeType : Type(s) of charge performed by the parking site.

o Attribute type: List of Text
o Allowed values: Some of those defined by the DATEX II version 2.3 ChargeTypeEnum

enumeration:
§ (flat, minimum, maximum, additionalIntervalPrice seasonTicket temporaryPrice

firstIntervalPrice, annualPayment, monthlyPayment, free, other)
§ Any other application-specific

o Mandatory
• requiredPermit : This attribute captures what permit(s) might be needed to park at this site. Semantics is

that at least one of these permits is needed to park. When a permit is composed by more than one item
(and) they can be combined with a ",". For instance "residentPermit,disabledPermit" stays that both, at
the same time, a resident and a disabled permit are needed to park. If empty or null, no permit is needed.

o Attribute type: List of Text
o Allowed values: The following, defined by the PermitTypeEnum enumeration of DATEX II

version 2.3.
§ oneOf (employeePermit, studentPermit, fairPermit, governmentPermit, residentPermit,

specificIdentifiedVehiclePermit, visitorPermit, noPermitNeeded)
§ Any other application-specific

o Mandatory
• occupancyDetectionType : Occupancy detection method(s).

o Attribute type: List of Text
o Allowed values: The following from DATEX II version 2.3 OccupancyDetectionTypeEnum:

§ (none, balancing, singleSpaceDetection, modelBased, manual)
o Or any other application-specific
o Mandatory

• acceptedPaymentMethod : Accepted payment method(s).
o Normative references: https://schema.org/acceptedPaymentMethod
o Optional

• description : Description about the parking site.

D2.4: Reference Data Models do Data Intensive and IoT based Smart City,
Smart Health and Smart Security Applications (V2.0)

© SmartSDK Consortium 2016-2018 Page 53 of 73

o Normative References: https://schema.org/description
o Optional

• image : A URL containing a photo of this parking site.
o Normative References: https://schema.org/image
o Optional

• layout : Parking layout. Gives more details to the category attribute.
o Attribute type: Text
o Allowed values: As per the ParkingLayoutEnum of DATEX II version 2.3:

§ one Of (automatedParkingGarage, surface, multiStorey, singleLevel, multiLevel,
openSpace, covered, nested, field, rooftop, sheds, carports, garageBoxes, other). See
also OpenStreetMap.

§ Or any other value useful for the application and not covered above.
o Optional

• usageScenario : Usage scenario(s). Gives more details to the category attribute.
o Attribute type: List of Text
o Allowed values: Those defined by the enumeration ParkingUsageScenarioEnum of DATEX II

version 2.3:
§ (truckParking, parkAndRide, parkAndCycle, parkAndWalk, kissAndRide, liftshare,

carSharing, restArea, serviceArea, dropOffWithValet, dropOffMechanical,
eventParking, automaticParkingGuidance, staffGuidesToSpace, vehicleLift,
loadingBay, dropOff, overnightParking, other)

§ Or any other value useful for the application and not covered above.
o Optional

• parkingMode : Parking mode(s).
o Attribute type: List of Text
o Allowed values: Those defined by the DATEX II version 2.3 ParkingModeEnum enumeration:
o (perpendicularParking, parallelParking, echelonParking)
o Optional

• facilities : Facilities provided by this parking site.
o Attributes: List of Text
o Allowed values: The following defined by the EquipmentTypeEnum enumeration of DATEX II

version 2.3:
§ (toilet, shower, informationPoint, internetWireless, payDesk, paymentMachine,

cashMachine, vendingMachine, faxMachineOrService, copyMachineOrService,
safeDeposit, luggageLocker, publicPhone, elevator, dumpingStation freshWater,
wasteDisposal, refuseBin, iceFreeScaffold, playground, electricChargingStation,
bikeParking, tollTerminal, defibrillator, firstAidEquipment fireHose fireExtinguisher
fireHydrant)

o Any other application-specific
o Optional

• security : Security aspects provided by this parking site.
o Attributes: List of Text
o Allowed values: The following, some of them, defined by ParkingSecurityEnum of DATEX II

version 2.3:
§ (patrolled, securityStaff, externalSecurity, cctv, dog, guard24hours, lighting,

floodLight, fences areaSeperatedFromSurroundings)
o Any other application-specific
o Optional

• highestFloor : For parking sites with multiple floor levels, highest floor.
o Attribute type: Number
o Allowed values: An integer number. 0 is ground level. Upper floors are positive numbers. Lower

floors are negative ones.
o Optional

• lowestFloor : For parking sites with multiple floor levels, lowest floor.
o Attribute type: Number
o Allowed values: An integer number.
o Optional

D2.4: Reference Data Models do Data Intensive and IoT based Smart City,
Smart Health and Smart Security Applications (V2.0)

© SmartSDK Consortium 2016-2018 Page 54 of 73

• maximumParkingDuration : Maximum allowed stay at site, on a general basis, encoded as a ISO8601
duration. A null or empty value indicates an indefinite duration.

o Attribute type: Text
o Optional

• totalSpotNumber : The total number of spots offered by this parking site. This number can be difficult to
be obtained for those parking locations on which spots are not clearly marked by lines.

o Attribute type: Number
o Allowed values: Any positive integer number or 0.
o Normative references: DATEX 2 version 2.3 attribute parkingNumberOfSpaces of the

ParkingRecord class.
o Optional

• availableSpotNumber : The number of spots available (including all vehicle types or reserved spaces,
such as those for disabled people, long term parkers and so on). This might be harder to estimate at those
parking locations on which spots borders are not clearly marked by lines.

o Attribute type: Number
o Allowed values: A positive integer number, including 0. It must lower or equal than

totalSpotNumber.
o Metadata:

§ timestamp : Timestamp of the last attribute update
§ Type: DateTime

o Optional
• extraSpotNumber : The number of extra spots available, i.e. free. This value must aggregate free spots

from all groups mentioned below: A/ Those reserved for special purposes and usually require a permit.
Permit details will be found at parking group level (entity of type ParkingGroup). B/ Those reserved for
other vehicle types different than the principal allowed vehicle type. C/ Any other group of parking spots
not subject to the general condition rules conveyed by this entity.

o Attribute type: Number
o Allowed values: A positive integer number, including 0.
o Metadata:

§ timestamp : Timestamp of the last attribute update
§ Type: DateTime

o Optional
• openingHours : Opening hours of the parking site.

o Normative references: http://schema.org/openingHours
o Optional

• firstAvailableFloor : Number of the floor closest to the ground which currently has available parking
spots.

o Attribute type: Number
o Metadata:

§ timestamp : Timestamp of the last attribute update
§ Type: DateTime

o Allowed values: Stories are numbered between -n and n, being 0 ground floor.
o Optional

• specialLocation : If the parking site is at a special location (airport, depatment store, etc.) it conveys what
is such special location.

o Attribute type: Text
o Allowed values: Those defined by ParkingSpecialLocationEnum of DATEX II version 2.3:

§ (airportTerminal, exhibitonCentre, shoppingCentre, specificFacility, trainStation,
campground, themePark, ferryTerminal, vehicleOnRailTerminal, coachStation,
cableCarStation, publicTransportStation, market, religiousCentre, conventionCentre,
cinema, skilift, hotel, other)

o Optional
• status : Status of the parking site.

o Attribute type: List of Text
o Metadata:
o timestamp : Timestamp of the last attribute update
o Type: DateTime

D2.4: Reference Data Models do Data Intensive and IoT based Smart City,
Smart Health and Smart Security Applications (V2.0)

© SmartSDK Consortium 2016-2018 Page 55 of 73

• Allowed values: The following defined by the following enumerations defined by DATEX II version 2.3
:

o ParkingSiteStatusEnum
o OpeningStatusEnum
o (open, closed, closedAbnormal,openingTimesInForce, full, fullAtEntrance, spacesAvailable,

almostFull)
o Or any other application-specific
o Optional

• reservationType : Conditions for reservation.
o Attribute type: Text
o Allowed values: The following specified by ReservationTypeEnum of DATEX II version 2.3:
o one Of (optional, mandatory, notAvailable, partly).
o Optional

• owner : Parking site's owner.
o Attribute type: Text
o Optional
o provider : Parking site service provider.
o Normative references: https://schema.org/provider
o Optional

• contactPoint : Parking site contact point.
o Normative references: https://schema.org/contactPoint
o Optional

• averageSpotWidth : The average width of parking spots.
o Attribute type: Number
o Default unit: Meters
o Optional

• averageSpotLength : The average length of parking spots.
o Attribute type: Number
o Default unit: Meters
o Optional

• maximumAllowedHeight : Maximum allowed height for vehicles. If there are multiple zones, it will be
the minimum height of all the zones.

o Attribute type: Number
o Default unit: Meters
o Optional

• maximumAllowedWidth : Maximum allowed width for vehicles. If there are multiple zones, it will be the
minimum width of all the zones.

o Attribute type: Number
o Default unit: Meters
o Optional

• refParkingAccess : Parking site's access point(s).
o Attribute type: List of references to ParkingAccess
o Optional

• refParkingGroup : Parking site's identified group(s). A group can correspond to a zone, a complete storey,
a group of spots, etc.

o Attribute type: List of references to ParkingGroup
o Optional

• refParkingSpot : Individual parking spots belonging to this offstreet parking site.
o Attribute type: List of references to ParkingSpot
o Optional

• areaServed : Area served by this parking site. Precise semantics can depend on the application or target
city. For instance, it can be a neighbourhood, borough or district.

o Attribute type: Text
o Optional

• aggregateRating : Aggregated rating for this parking site.
o Normative References: https://schema.org/aggregateRating
o Optional

D2.4: Reference Data Models do Data Intensive and IoT based Smart City,
Smart Health and Smart Security Applications (V2.0)

© SmartSDK Consortium 2016-2018 Page 56 of 73

Example of use:
{
 "id":"OffStreetParking_1524287854109"
 "name": "Parking Apatzingan",
 "category": ["private","forEmployees", "forVisitors", "forStudents"],
 "address": "Apatzingán 212, Palmira, 62490 Cuernavaca, Mor.",
 "description": "Estacionamiento Mecatrónica",
 "location": [
 [18.87991, -99.22162],
 [18.87977, -99.221794],
 [18.879713, -99.221746],
 [18.879856, -99.221563],
 [18.87991, -99.22162]
],
 "areaServed": "Zone_1524284309191"
}

3.2.3.1.2 Road

The Road data model [3] [4] is used in the SmartSecurity application to define the parking streets of an
organization. Also, this data model is used to define those streets that are within the geographic space
of the organization.

Data Model:

• id : Unique identifier.
• type : Entity type. It must be equal to Road.
• dateCreated : Entity's creation timestamp.

o Attribute type: DateTime
o Optional

• dateModified : Last update timestamp of this entity.
o Attribute type: DateTime
o Optional

• name : Name given to this road, for instance M-30.
o Normative References: https://schema.org/name
o Mandatory

• alternateName : An alias for this road.
o Normative References: https://schema.org/alternateName
o Optional

• description : Description or long name given to this road.
o Normative References: https://schema.org/description
o Optional

• roadClass : The classification of this road.
o Attribute type: Text
o Allowed values: Those described by http://wiki.openstreetmap.org/wiki/Key:highway.
o Mandatory

• refRoadSegment : Road segments which define this road.
o Attribute type: List of references to entities of type RoadSegment.
o Mandatory

• length : Total length of this road in kilometers.
o Attribute type: Number
o See also https://schema.org/length
o Default unit: Kilometer (Km)
o Optional

• responsible : Responsible for the raod i.e. the organism or company in charge of its maintenance.

D2.4: Reference Data Models do Data Intensive and IoT based Smart City,
Smart Health and Smart Security Applications (V2.0)

© SmartSDK Consortium 2016-2018 Page 57 of 73

o Attribute type: Text
o Optional

Example of use:
{
 "id": "Road_1524287854109"
 "name": "Calle Estacionamiento Mecatrónica",
 "description": "Calle del Estacionamiento de Mecatrónica de CENIDET Apatzingan",
 "length": 4,
 "responsible":"OffStreetParking_1524287854109"
}

3.2.3.1.3 RoadSegment

The RoadSegment data model [3] [4] is used in the Smart Security application to describe the
characteristics of segments in which a street can be divided; besides, this model provides attributes to
detail the properties of the lines or lanes that the street segment contains.

Data Model:

• id : Unique identifier.
• type : Entity type. It must be equal to RoadSegment.
• dateCreated : Entity's creation timestamp.

o Attribute type: DateTime
o Optional

• dateModified : Last update timestamp of this entity.
o Attribute type: DateTime
o Optional

• source : The source of this data.
o Attribute type: URL
o Optional

• name : Name given to this road segment.
o Normative References: https://schema.org/name
o Mandatory

• alternateName : An alias for this road segment.
o Normative References: https://schema.org/alternateName
o Optional

• refRoad : Road to which this road segment belongs to.
o Attribute type: A reference to an entity of type Road.
o Mandatory

• location : A GeoJSON (multi)line string which defines this road segment.
o Attribute type: geo:json.
o Normative References: https://tools.ietf.org/html/rfc7946
o Mandatory

• startPoint : The start point of this road segment encoded as a GeoJSON point.
o Attribute type: geo:json
o Normative References: https://tools.ietf.org/html/rfc7946
o Mandatory

• endPoint : The end point of this road segment encoded as a GeoJSON point.
o Attribute type: geo:json
o Normative References: https://tools.ietf.org/html/rfc7946
o Mandatory

D2.4: Reference Data Models do Data Intensive and IoT based Smart City,
Smart Health and Smart Security Applications (V2.0)

© SmartSDK Consortium 2016-2018 Page 58 of 73

• startKilometer : The kilometer number (measured from the road's start point) where this road segmnent
starts.

o Attribute type: Number
o Optional

• endKilometer : The kilometer number (measured from the road's start point) where this road segment
ends.

o Attribute type: Number
o Optional

• allowedVehicleType : Vehicle type(s) allowed to transit through this road segment.
o Attribute type: List of Text
o Allowed values: The following values defined by VehicleTypeEnum, DATEX 2 version 2.3:

§ (agriculturalVehicle, bicycle, bus, car, caravan, carWithCaravan, carWithTrailer,
constructionOrMaintenanceVehicle, lorry, moped, motorcycle,
motorcycleWithSideCar, motorscooter, tanker, trailer, van, anyVehicle)

o Mandatory
• totalLaneNumber : Total number of lanes offered by this road segment.

o Attribute type: Number. Integer greater than 0.
o Mandatory

• length : Total length of this road segment in kilometers.
o Attribute type: Number
o See also https://schema.org/length
o Default unit: Kilometer (Km)
o Optional

• maximumAllowedSpeed : Maximum allowed speed while transiting this road segment. More restrictive
limits might be applied to specific vehicle types (trucks, caravans, etc.).

o Attribute type: Number
o Default unit: Kilometer per hour (Km/h).
o Optional

• minimumAllowedSpeed : Minimum allowed speed while transiting this road segment.
o Attribute type: Number
o Default unit: Kilometer per hour (Km/h).
o Optional

• maximumAllowedHeight : Maximum allowed height for vehicles transiting this road segment.
o Attribute type: Number
o See also: https://schema.org/height
o Default unit: Meter (m)
o Optional

• maximumAllowedWeight : Maximum allowed weight for vehicles transiting this road segment.
o Attribute type: Number
o See also: https://schema.org/weight
o Default unit: Kilogram (Kg)
o Optional

• width : Road's segmwent width.
o Normative References: https://schema.org/width
o Default unit: Meter (m)
o Optional

• laneUsage : This attribute can be used to convey specific parameters describing each lane.
o Attribute type: List of Text
o Allowed values: It must contain a string per road segment lane. The element 0 of the array must

contain the information of lane 1, and so on. Format of the referred string must be:
"<lane_direction>, <lane_minimumAllowedSpeed>, <lane_maximumAllowedSpeed>,
<lane_maximumAllowedHeight>, <lane_maximumAllowedWeight>" . <lane_direction> is a
text string with the following allowed values:

§ forward. The lane is currently used in the forwards direction.
§ backward. The lane is currently used in the backwards direction. The only mandatory

parameter is lane_direction. If not specified, the rest of parameters can be assumed to
be equal to those specified at entity level.

D2.4: Reference Data Models do Data Intensive and IoT based Smart City,
Smart Health and Smart Security Applications (V2.0)

© SmartSDK Consortium 2016-2018 Page 59 of 73

o Optional
• category : Allows to convey extra characteristics of a road segment.

o Attribute type: List of Text
o Allowed values:

§ oneway : Flags whether the road segment can only be used in one direction. If not
present it means road segment can be used in both directions (forwards and backwards).
See also http://wiki.openstreetmap.org/wiki/Key:oneway

§ toll : Flags whether the road segment is under toll fees.
§ link : Flags whether this road segment is an auxiliary link segment for exiting or

entering a road.
Seehttps://wiki.openstreetmap.org/wiki/Tag:highway%3Dmotorway_link

§ Any other value meaningful to an application.
o Optional

Example of use:
{
 "id": "Road_1524105724678",
 "refRoad": "Road_1524287854109"
 "name" : "Gloria Almada de Bejarano 2",
 "location": [
 [18.875393, -99.220134],
 [18.875454, -99.220202],
 [18.875748, -99.220638],
 [18.875992, -99.221072],
 [18.876198, -99.221479],
 [18.876244, -99.221544],
 [18.876322, -99.221619],
 [18.876352, -99.221646],
 [18.876426, -99.221687],
 [18.877086, -99.221886],
 [18.877188, -99.221922],
 [18.877275, -99.221963],
 [18.877624, -99.222141],
 [18.877689, -99.222156],
 [18.877721, -99.222160],
 [18.877788, -99.222161],
 [18.877862, -99.222147],
 [18.877942, -99.222124],
 [18.878049, -99.222071],
 [18.878107, -99.222019],
 [18.878211, -99.221888],
 [18.878255, -99.221809],
 [18.878295, -99.221697],
 [18.878355, -99.221470],
 [18.878422, -99.221304],
 [18.878488, -99.221209],
 [18.878544, -99.221163],
 [18.878601, -99.221144],
 [18.878936, -99.221113],
 [18.879017, -99.221087],
 [18.879098, -99.221041],
 [18.879203, -99.220965],
 [18.879332, -99.220862]
],
 "startPoint": [18.875393, -99.220134],
 "endPoint": [18.879332, -99.220862],
 "totalLaneNumber": 1,
 "laneUsage": ["forward"],
 "maximumAllowedSpeed": 20 ,

D2.4: Reference Data Models do Data Intensive and IoT based Smart City,
Smart Health and Smart Security Applications (V2.0)

© SmartSDK Consortium 2016-2018 Page 60 of 73

 "minimumAllowedSpeed": 5,
 "width": 3
}

3.2.3.1.4 Building
The Building data model is used in the SmartSecurity application to delimit the space geographic
occupied by an organization, as well as its characteristics. This data model has been defined following
the GSMA Building data model adopted recently as a FIWARE data model [15][16].

It is important to note that, the Building data model does not have the "name" attribute; for our
application this is required. For this reason, we have added the name of the zone within the owner
attribute of this data model.

This model is also used to model other building or a “zone” of an organization; for this reason, we use
the category attribute to define if a building is a zone.

Data Model:

• id : Unique identifier.
• type : Entity type. It must be equal to Building.
• dateModified Last update timestamp of this entity

o Attribute type: DateTime
o Optional

• dateCreated: Entity's creation timestamp.
o Attribute type: DateTime
o Optional

• owner: List of references to Person(s) or Organization(s)
o Attribute Type: List of references to Person or Organization
o Optional

• category: One or more categories relevant to the building with choices based on for example
https://wiki.openstreetmap.org/wiki/Map_Features#Building

o Attribute type: List of Text
o Required

• location: The geo:json encoded polygon of this building.
o Attribute type: geo:json.
o Optional.

• containedInPlace:The geo:json encoded polygon of the building plot in which this building sits.
o Attribute Type: geo:json
o Optional.

• address: The building PostalAddress encoded as a Schema.org PostalAddress.
o Attribute Type: PostalAddress
o Required

• description: An optional description of the entity.
o Attribute Type: Text
o Optional

• occupier: A List containing a JSON encoded sequence of characters referencing the unique Ids of the
occupiers(s). Related to a Schema.org person or organization.

o Attribute Type: List of references to Person or Organization
o Optional

• floorsAboveGround: The number of floors above ground level in this building.
o Attribute type: Number
o Optional

• floorsBelowGround: The number of floors below ground level in this building.
o Attribute type: Number

D2.4: Reference Data Models do Data Intensive and IoT based Smart City,
Smart Health and Smart Security Applications (V2.0)

© SmartSDK Consortium 2016-2018 Page 61 of 73

o Optional
• refMap: A URL to a mapping service which shows the location of the building

o Attribute Type: URL
o Optional

• openingHours : The specific time range that this building is open.
o Attribute type: List of Opening Hours
o Optional

Example of use:
{
 "id" : "Zone_152226465913345",
 "owner" : "CENIDET APATZINGÁN",
 "address": "Apatzingán 212, Palmira, 62490 Cuernavaca, Mor.",
 "category": "zone",
 "description": "Centro Nacional de Investigación y Desarrollo Tecnológico",
 "location": [
 [18.87995433844068,-99.2219396866858],
 [18.87998986907176,-99.22182166948915],
 [18.87991373199594,-99.22162855044007],
 [18.87967516893432,-99.22142470255497],
 [18.879385847318705,-99.22103846445683],
 [18.879380771496425,-99.22088289633396],
 [18.879243724236808,-99.22103310003877],
 [18.87901531188834,-99.22112965956333],
 [18.878832581785367,-99.22118866816163],
 [18.87869045823416,-99.22120476141575],
 [18.878553410409896,-99.22126377001405],
 [18.878477272681298,-99.2213442362845],
 [18.878665079015903,-99.22130132094026],
 [18.878771671706748,-99.22146761789918],
 [18.878898567678874,-99.22155344858766],
 [18.879035615220808,-99.22143006697297],
 [18.879137131846274,-99.22143006697297],
 [18.879304634143818,-99.22147298231724],
 [18.879395998962796,-99.22156417742372],
 [18.87947721209341,-99.22164464369416],
 [18.879680244747682,-99.22196114435792],
 [18.879827443268194,-99.22200405970219],
 [18.87995433844068,-99.2219396866858]
]
}

3.2.3.2 New data models

This section describes the new data models for use in Smart Security application.

3.2.3.2.1 VideoObject

The model is based on the schema VideoObject entity [11]. As the VideoObject entity in schema is
related to video objects in the context of “youtube videos” and movies, only common and specific
attributes are selected for the VideoObject proposed in this document. The attributes proposed are
valid to capture metadata of the main video standards. A refDevice attribute is added to identify the
camera source.

Data model:

D2.4: Reference Data Models do Data Intensive and IoT based Smart City,
Smart Health and Smart Security Applications (V2.0)

© SmartSDK Consortium 2016-2018 Page 62 of 73

• id : Entity's unique identifier.
• type : Entity type. It must be equal to VideoObject.
• name : Common name given to this video.

o Normative References: https://schema.org/name
o Optional

• description : Video description.
o Normative References: https://schema.org/description
o Optional

• location : Location where the video was recorded represented by a GeoJSON geometry.
o Attribute type: geo:json.
o Normative References: https://tools.ietf.org/html/rfc7946
o Optional

• refDevice : The camera device source.
o Attribute type: Device.
o Optional.

• contentSize : File size in (mega/kilo) bytes.
o Attribute Type: Text
o Optional

• videoFrameWidth : The frame width size of the video.
o Attribute Type: Text
o Mandatory.

• videoFrameHeight : The frame height size of the video.
o Attribute Type: Text
o Mandatory

• bitRate : the bitrate of the video in kbps.
o Attribute Type: Text
o Mandatory.

• encodingFormat : mpeg4, etc..
o Attribute type: Text.
o Mandatory.

• duration : the duration of the video.
o Attribute Type:Text in ISO 8601 date format.
o Mandatory.

• dateCreated : The date on the which the video was created.
o Attribute type: Date
o Mandatory.

• dateExpires : Date the content expires and is no longer useful or available
o Attribute type: Date
o Optional.

• contentURL : Actual bytes of the video object.
o Attribute type: URL
o Mandatory.

Example of use:

The model is used by the Smart Security application to encoding high level data of videos recorded
when movement is detected in the scene. One instance of this model is created every time that the
basic movement event is detected by the streaming processing module.

{
 "id": "videoObject-1234",
 "type": "VideoObject",
 "name": “Building8-2016-10-25”,
 “description”: “Video recorded in the library. ”
 "location":{"type": "point",

D2.4: Reference Data Models do Data Intensive and IoT based Smart City,
Smart Health and Smart Security Applications (V2.0)

© SmartSDK Consortium 2016-2018 Page 63 of 73

 "coordinates": [-3.1644, 40.62234] },
 "refDevice": "camera12345",
 “contentSize”:”450 M”,
 “duration”:”T1H5M12S”,
 "dateCreated": “2016-04-05”,
 “dateExpires”: “2016-05-05”,
 “contentUrl”:”www.surveillance.com/Building8-2016-10-25.mp4”
}

3.2.3.2.2 VisualObject

This model is intended to capture information about the “objects” detected on video. From this point
of view all elements (in a first stage) are an object instance. The model proposed is based on ViSOR
[12] and the research described in [13]. Both references are based on ontologies where visual concepts
and the surveillance domain are present. ViSOR is a repository that contains a large set of multimedia
data and the corresponding annotations. On the other side, [13] describes a surveillance approach
based on ontology for video event analysis. From video analysis perspective all visual elements are
objects which means that backpacks, buildings, vehicles, glasses, etc. are (visual) objects.

Data Model:

• id : Entity's unique identifier.
• type : Entity type. It must be equal to VisualObject.
• visualCategory : Category that the object belongs like book, backpack, hat, wall and so on.

• Mandatory
• description : VisualObject description.

• Normative References: https://schema.org/description
• Optional

• location : Location that is represented by a GeoJSON geometry.
• Attribute type: geo:json.
• Normative References: https://tools.ietf.org/html/rfc7946
• Optional

• movementCapacity : Defines if the object is a fixed object or not.
• Attribute type: Text
• Allowed values:

§ movable.
§ fixed.

• Optional
• contextType : Defines if the object belongs to the context.

• Attribute type: Text
• Allowed values:

§ contextual.
§ noContextual.

• Mandatory if the movementCapacity is Movable.
• dateCreated : The date when the visualObject was created.

• Attribute type: Text.
• Optional.

• refVideoObject: The videoObject reference that contains the visual object observed.
• Attribute type: Reference to an entity of type VideoObject
• Mandatory

• firstFrameObserved:The first frame when the object was observed.
• Attribute type: Number
• Optional

• lastFrameObserved:The last frame when the object was observed .
• Attribute type: Number

D2.4: Reference Data Models do Data Intensive and IoT based Smart City,
Smart Health and Smart Security Applications (V2.0)

© SmartSDK Consortium 2016-2018 Page 64 of 73

• Optional
• data : used to carry additional data for the Visual Object.

• Attribute type: StructuredValue
• Optional.

Example of use:

After the Smart Security application has processed the video streaming, visual objects are identified.
Thus, every time that the recognition modules detect/identify a new object an instance of this data
model will be created.
{
 "id": "visualObject-1234",
 "type": "VisualObject",
 "visualCategory": "Backpack",
 “description”: “Movable object in the scene ”
 "location":{"type": "Polygon",
 "coordinates": [
 [
 [-100.0, -100.0],
 [100.0, -100.0],
 [100.0, 100.0],
 [-100.0, -100.0]
]
]
 },
		“movementCapacity”:”movable”,
 “contextType”:”noContextual”,
 “videoObjectRef”: “BackpackVideoObject123”,
 “firstFrameObserved”: “10”,
 “LastFrameObserved”: “20”,
 "dateCreated": “2016-04-05”,
}

D2.4: Reference Data Models do Data Intensive and IoT based Smart City,
Smart Health and Smart Security Applications (V2.0)

© SmartSDK Consortium 2016-2018 Page 65 of 73

4 DATA PRIVACY AND SECURITY ANALYSIS

The scenarios tackled in SmartSDK may involve the usage of private or sensitive data (e.g. the health
record of a patient), as such it is important to analyse them and decide how to handle them in such a
way that such data are protected in line with Data Privacy and Data Protection regulations. This is
particular important due to the new technological advances that have allowed a paradigm shift in the
use of computational applications: from desktop software to software as a service (or cloud
computing).

Cloud computing delivers existing services through servers that are in the open Internet. Because of
this, it is essential to apply ethical rules regarding the data privacy and security of the final use of data.
Accordingly, we describe the possible issues about this topic in the SmartSDK applications and their
data models.

è Smart Security application. In the application we notice three components to be susceptible to
data privacy and security issues: user management, video data management and video
analysis.

o User management. First of all, in order that a user (usually a guard) should able to use
the system, he should be a registered user. This information will be managed in
private by the system using the Identity Manager (Keystone). User’s passwords will
be secured by encryption.

o Video management. Although the Device and VideoObject model does not contain
sensitive data, the streaming contains images with people that have not given his
consent to be recorded. Thus, the user management is in charge of allow access to
registered user only that can see the cameras online. For video saving on external
devices an administrator user is required. The streaming is managed by Kurento and is
not sent to the Context Broker. Also, in order to avoid data privacy and security issues
regarding video streaming, the url saved in the Device model is encrypted.

o Video Analysis. As the video analysis and video event detection is online, the scene
changes over the time, so, information about people and vehicle contain generic
information. For example, if a person is recognized an anonymous label is created as
name (person1). For vehicle detection/classification we do not save specific
information about the owner, and we will protect and/or encrypt sensitive data such as
the plate number.

In general, such approach will be enough to comply with Data Privacy and Security legislation
in Mexico (where the security trial will take place).

è Smart City Application: In the application we notice three components to be susceptible to
data privacy and security issues: user management, user alerts and user routes.

o User management. All information of registered users will be managed in private by
the system, using secure connections through the Identity Manager, and also be
creating regular and private databases with information of the users. This type of
information includes his personal data (name, last name, age, and so on) and the
information from his type of vehicle and diseases. Such data will be only accessible to
the user himself and will be used to compute anonymized route recommendations.

o User alerts. New data models were created to send alerts related to traffic jam,
accidents cars, weather conditions, high level of pollutants, pollen, and asthma
attacks. This information is sent to the Context Broker because it represents context
data useful to app users. Such information will be anonymized to ensure that users
generating the alert will not be traceable.

o User routes management. All the information related to routes generated by users

D2.4: Reference Data Models do Data Intensive and IoT based Smart City,
Smart Health and Smart Security Applications (V2.0)

© SmartSDK Consortium 2016-2018 Page 66 of 73

traveling by transit, bus and rail will be secured and only accessible to the user
himself (eventually through an encryption layer). Such information will be
anonymized to ensure that users generating the alert will not be traceable.

These data management procedures will be enough to comply with Data Privacy and Security
legislation in Mexico (where the trial will take place).

è Smart Health Application. Developed components and data-models contributed in this chapter
have been developed in consideration of three key elements related to security and privacy.

o Secure access. Public repository in which data is shared through the Orion Context
Broker, has enabled a restricted access limited by previous OAuth authentication and
FIWARE’s token.

o Privacy. There are two components taking into account:

§ User management. Information will be managed by a private data-manager,
sheltered by using OAuth authentication mechanism through the Identity
Manager, and by creating a private database. User information (main owner)
will be based on unique identification data, such as: name and e-mail.
Participant information (direct interactor of devices) will consist on
demographic data such as: age, date of birth, and gender.

§ Sensor data (used as part of the motorPhisycalTest data-model). Although
metadata will include descriptive information from the mobile devices, it will
avoid sensitive data such as IMEI number. Thus, no data have to be
encrypted.

§ Ethical considerations. Sensitive data will be removed from mobile devices
(after secure them on FIWARE’s cloud) and remote servers (after concluding
trial) in order to fulfil ethical legislation from the countries in which the trial
will be conducted (i.e., Mexico, Italy).

D2.4: Reference Data Models do Data Intensive and IoT based Smart City,
Smart Health and Smart Security Applications (V2.0)

© SmartSDK Consortium 2016-2018 Page 67 of 73

5 CONCLUSIONS

One of the most important elements to facilitate the development of applications in FIWARE are data
models. Data models are a formalized data structure that facilitates the exchange of information
between the components of an application.

Smart City, Smart Health and Smart Security are three smart Applications that have guided the
exploration process to identify new data model requirements.

From previous analysis, the re-use of Device/DeviceModel, AirQualityObserved, Device,
DeviceModel, Public vehicle Model, WeatherObserved, TrafficFlowObserved, OffstreetParking,
Road, RoadSegment, Vehicle and Building data models was reported and based on requirements of the
applications developed by scenario new data models were proposed: MotorPhysicalTest,
Questionnaire, Questionnaire/Question, Questionnaire/Answer, Alert, SmartSpot,
SmartPointOfInteraction, Agency, Route, Stop, Trip, TimeRange, Entity, ServiceAlert, VideoObject
and VisualObject (D2.1: “Reference data models for data intensive and IoT based Smart City, Smart
Healthcare and Smart Security applications v1”) .

In a second phase of analysis and along with the advances in the development of the applications by
scenario, minor needs have been detected related data models:

è For the Smart City scenario, the WeatherObserved y TrafficFlowObserved are reused and the
new data model AeroAllergenObserved is proposed in the last phase development of the
application.

è Smart Security scenario proposed an extension to the first version of the VisualObject model.
Thus, fields refVideoObject, FirstFrameObserved, LastFrameObserved and data are
introduced. On the other hand, Road and RoadSegment are data models reused for the
representation of the environment where the Security application is running

In SmartHealth scenario no extensions or new models are identified. However, in addition to the Risk
of fall application, Heart rate monitoring & IoT feedback, and Rehabilitation monitoring applications
were developed as a proof of concept to illustrate the use of the proposed models.

All applications provide procedures that are enough to comply with Data Privacy and Security
legislation in Mexico (where the trial will take place). These procedures include: user authentication,
encryption of fields (of data models) and anonymized information.

“Additional” data models, namely data models that are not sent to the Orion Context Broker, are
described in the appendix A.

D2.4: Reference Data Models do Data Intensive and IoT based Smart City,
Smart Health and Smart Security Applications (V2.0)

© SmartSDK Consortium 2016-2018 Page 68 of 73

REFERENCES

[1] FIWARE NGSIv2 (2016, October 31). fiware-ngsiv2-rc-2016_10_31. Retrieved 2018, May from
http://telefonicaid.github.io/fiware-orion/api/v2/stable/ Authors, Title2, Date….

[2] SmartSDK Consortium. Description of Action. July 2016. SmartSDK project is co-funded by the
EU's Horizon2020 programme under agreement number 723174 - ©2016 EC and by CONACYT
agreement 737373.

[3] Fiware Data Models. Retrieved 2018, May from http://fiware-
datamodels.readthedocs.io/en/latest/index.html

[4] Github Repository. “smartsdk/dataModels”. Retrieved 2018, May from
https://github.com/smartsdk/dataModels

[5] Open Mobile Health. Retrieved 2017, March from http://www.openmhealth.org/

[6] General Transit Feed Specification. (2016, March 31). Retrieved 2017, April from
https://developers.google.com/transit/gtfs/

[7] Service Alerts. (2016, July 12). Retrieved 2017, April from
https://developers.google.com/transit/gtfs-realtime/guides/service-alerts

[8] Github Repository. “GSMADeveloper/HarmonisedEntityDefinitionsA”. Retrieved 2017, March
from https://github.com/GSMADeveloper/HarmonisedEntityDefinitionsA/

[9] Github Repository-UserContext. “tree/user”. Retrieved 2017, March from
https://github.com/smartsdk/dataModels/tree/user

[10] Google Transit Feed Specification - TransitWiki. Retrieved 2017, May from
https://www.transitwiki.org/TransitWiki/index.php/General_Transit_Feed_Specification

[11] Schema. Retrieved 2017 March from http://schema.org/

[12] Video Surveillance Online Repository. Retrieved 2017, May from
http://www.openvisor.org/config_schema.asp

[13] J. M. M. Á. G. Juan Carlos San Miguel, "An ontology for Event Detection and its Application
in Surveillance Video," in Sixth IEEE International Conference on Advanced Video and Signal
Based Surveillance, 2009.

[14] D 3.1 SmartSDK Reference Models and Recipes. Retrieved 2017, May from
https://drive.google.com/file/d/0B7ZXNoZldhmeaENsRktYMGVna1U/view?usp=sharing

[15] Github repository “FIWARE/dataModels”. Retrieved 2018, May 17 from
https://github.com/Fiware/dataModels

[16] GSM Association Non-confidential Official Document CLP.26 - IoT Big Data Harmonised
Data Model. Retrieved 2018, May 17 from https://www.gsma.com/iot/wp-
content/uploads/2016/11/CLP.26-v1.0.pdf

D2.4: Reference Data Models do Data Intensive and IoT based Smart City,
Smart Health and Smart Security Applications (V2.0)

© SmartSDK Consortium 2016-2018 Page 69 of 73

APPENDIX A – ADDITIONAL DATA MODELS

1 Introducción

In SmartSDK Generic Enablers, Reference Architectures and Data Models are the key elements that
combined help the development of smart applications. In FIWARE smart applications are
applications that are context-aware and rely on data context management services to provide “smart”
decisions and information. Such models are encoded using NGSI formalism as described in D3.4 and,
specifically for the applications developed in SmartSDK in D2.4.

Of course not all data models part of an application are related to the “context”. For example, a user
profile, is required to manage users inside an application, but a user profile, including email, name and
so on it is not what we usually consider contextual data. Contextual data are all such type of data that
frequently vary over time, for example the location of a given user. Thus, besides the data models
provided by FIWARE [1] and the new data models proposed for the different SmartSDK [2] scenarios
we are including additional data models that are not context related but are needed for the
development of concrete applications in the context of SmartSDK project.

This appendix complements the set of data models reported in this document.

2 Data Models for specific use by application

2.1 Smart Health

2.1.1 Clinical Control

Patient's basic health data that might influence a physical-test performance. This model is build based
on the Open Mobile Health [5]. Thus, the model has being harmonised to make them part of FIWARE
data-model.

Data model:

• id : Unique identifier.
o Mandatory.

• type : Entity type. It must be equal to ControlTest.
o Mandatory

• refUser : Reference to the actual User sheltered by an independent service.
o Attribute type: string.
o Mandatory.

• omh:body_weight : Represents body weight.
o Attribute type: body-weight.
o Allowed values: (kg, g, lbs, oz).
o Mandatory.

• omh:body_height : Represents body height.
o Attribute type: body-height.
o Allowed values: (m, cm, ft, in).
o Mandatory.

• waistCircumference : This schema represents a person's waist circumference, either a single body weight
measurement, or for the result of aggregating several measurements made over time (see Numeric
descriptor schema for a list of aggregate measures).

o Attribute type: waist-circumference.
o Mandatory.

• omh:heart_rate : Represents a person’s heart rate.

D2.4: Reference Data Models do Data Intensive and IoT based Smart City,
Smart Health and Smart Security Applications (V2.0)

© SmartSDK Consortium 2016-2018 Page 70 of 73

o Attribute type: heart-rate.
o Allowed values: (beats/min).
o Mandatory.

• omh:systolic_blood_pressure : It should be combined with diastolic blood pressure schema to create the
full schema.

o Attribute type: systolic-blood-pressure.
o Allowed values: (mmHg).
o Mandatory.

• omh:diastolic_blood_pressure : It should be combined with systolic blood pressure schema to create the
full schema.

o Attribute type: diastolic-blood-pressure.
o Allowed values: (mmHg).
o Mandatory.

• dateModified : Date and time measurements are taken.
o Attribute type: DateTime.
o Mandatory.

Example of use:
{
 "id": "ffffffffff9cbbf4465f0ef30033c587-control-4",
 "type": "ControlTest",
 "refUser": "http://207.249.127.162:1234/users/1",
 "omh:body_weight": {
 "value": 89,
 "unit": "kg"
 },
 "omh:body_height": {
 "value": 180,
 "unit": "cm"
 },
 "waistCircumference": {
 "value": 100,
 "unit": "cm"
 },
 "omh:heart_rate": {
 "value": 70,
 "unit": "beats/min"
 },
 "omh:systolic_blood_pressure": {
 "value": 120,
 "unit": "mmHg"
 },
 "omh:diastolic_blood_pressure": {
 "value": 120,
 "unit": "mmHg"
 },
 "dateModified": "2017-01-18T20:45:42.697Z"
}

2.2 Smart City

2.2.1 User profile

This entity models a user. In addition, this model considers the addresses of home and workplace of a
user. The model considers these data due to that these could be used to save favorites places. It is
important to mention that this models is saved in Identity Manager.

D2.4: Reference Data Models do Data Intensive and IoT based Smart City,
Smart Health and Smart Security Applications (V2.0)

© SmartSDK Consortium 2016-2018 Page 71 of 73

Data model:
• id : Entity's unique identifier.
• type : Entity type. It must be equal to user.
• name : The name of user.

o Attribute type: text
o Normative References: https://schema.org/name
o Mandatory

• family name : The last name of user
o Attribute type: text
o Normative References: https://schema.org/familyName
o Mandatory

• gender: The gender of user
o Attribute type: text
o Normative References: [https://schema.org/gender] (https://schema.org/gender)
o Optional

• birthDate:The date of birth of user
o Attribute type: Date
o Normative References: [https://schema.org/birthDate] (https://schema.org/birthDate)
o Optional

• homeaddress: Civic address of a user´s home.
o Normative References: [https://schema.org/address]
o Optional

• workaddress: Civic address of the workplace user.
o Normative References: https://schema.org/address
o Optional

• dateCreated : Entity's creation timestamp
o Attribute type: DateTime
o Optional

• dateModified : Last update timestamp of this entity
o Attribute type: DateTime
o Optional

Example of use:

{
 "id": "user:1",
 "type": "user",
 "name": "Iker",
 "family name": "Smith",
 "gender": "Smith",
 "birthDate": {
 "year":"1988",
 "month":"april",
 "day":"8"
 }
 "homeaddress": {
 "addressCountry": "Mexico",
 "addressRegion": "Ciudad de México",
 "addressLocality": "Coyoacán",
 "streetAddress": "Puente de Piedra 150",
 "postalCode": "14090"
 },
 "workaddress": {
 "addressCountry": "Mexico",
 "addressRegion": "Ciudad de México",
 "addressLocality": "Tlalpan",

D2.4: Reference Data Models do Data Intensive and IoT based Smart City,
Smart Health and Smart Security Applications (V2.0)

© SmartSDK Consortium 2016-2018 Page 72 of 73

 "streetAddress": "San Fernando 37",
 "postalCode": "14050"
 },

 "dateCreated": "2017-01-02T09:25:55.00Z",
 "dateModified": "2017-02-02T011:13:55.00Z"
}

2.2.2 Disease
This entity models the health condition of a user, including properties such as pathology, symptom and
risk factor. This information could be useful to determine the best route to follow to reach a
destination, taking into account the user health conditions. We use this model in Smart City App to
propose an ideal route for the user, avoiding high levels of pollution, floods or pollen, etc., allowing
for instance, to obtain the preferred routes for people with respiratory diseases. It is important to
mention that this models is saved in Identity Manager.

Data model:

• id : Entity's unique identifier.
• type : Entity type. It must be equal to disease.
• pathology : Illness physical or mental of user

o Attribute type: Text
o Normative References: https://health-lifesci.schema.org/Pathology
o Optional

• symptom : A sign or symptom of user condition.
o Attribute type: Text
o Normative References: http://health-lifesci.schema.org/signOrSymptom
o Optional

• PhysicalActivity : Any bodily activity that enhances or maintains physical fitness and overall health and
wellness. Includes activity that is part of daily living and routine, structured exercise, and exercise
prescribed as part of a medical treatment or recovery plan.

o Attribute type: Text
o Normative References: https://health-lifesci.schema.org/PhysicalActivity
o Optional

• possibleComplication : A possible unexpected and unfavorable evolution of a medical condition.
Complications may include worsening of the signs or symptoms of the disease, extension of the
condition to other organ systems, etc.

o Attribute type: Text
o Normative References: http://health-lifesci.schema.org/possibleComplication
o Optional

• riskfactor : A modifiable or non-modifiable factor that increases the risk of user contracting this
condition.

o Attribute type: Text
o Normative References: https://health-lifesci.schema.org/riskFactor
o Optional

• dateCreated : Entity's creation timestamp
o Attribute type: DateTime
o Optional

• dateModified : Last update timestamp of this entity
o Attribute type: DateTime
o Optional

D2.4: Reference Data Models do Data Intensive and IoT based Smart City,
Smart Health and Smart Security Applications (V2.0)

© SmartSDK Consortium 2016-2018 Page 73 of 73

Example of use:
{
 "id": "disease:asthma",
 "type": "disease",
 "pathology": "Mild Intermittent Asthma",
 "symptom": "cough, wheeze, chest tightness or difficulty breathing less than twice
a week.",
 "PhysicalActivity": "Do not interfere with normal activities",
 "possibleComplication": "Nighttime symptoms less than twice a month"
 "dateCreated": "2017-01-02T09:25:55.00Z",
 "dateModified": "2017-02-02T011:13:55.00Z"
}

3 Data Models for specific use by application
Although specific application data models are not sent to the OCB, it could be reused for specific
purposes by other applications. So this document is an annexed to the D.2.4 Reference data models
for data intensive and IoT based Smart City, Smart Health and Smart Security Applications V2 report.

