
Grant Agreement No.: 723174
Call: H2020-ICT-2016-2017
Topic: ICT-38-2016 - MEXICO: Collaboration on ICT
Type of action: RIA

D3.2: SmartSDK IoT and Data

Management Enablers
Revision: v.1.0

Work package WP 3
Task Task 3.1 & Task 3.2
Due date 31/05/2017
Submission date 31/05/2017
Deliverable lead INFOTEC
Version 1.0
Authors Hugo Estrada (INFOTEC), Blanca Vázquez (INFOTEC), Tomas

Aliaga (MARTEL), Germán Molina (HOPU), Miguel González
(ITESM), Alicia Martínez (CENIDET), Antonio Macías (CICESE).

Reviewers Federico Facca (MARTEL), Netzahualcóyotl Hernández (CICESE)

Abstract This deliverable provides an overview of the current status of the
components developed for Internet of Things and Data
Management.

Keywords FIWARE, Data Management, IoT Service Enablement

 D3.2: SmartSDK IoT and Data Management Enablers (V 1.0)

© SmartSDK Consortium 2016-2018 Page 2 of 44

Document Revision History

Version Date Description of change List of contributor(s)

V1.0 31/05/2017 Final version ready for
submission

Federico M. Facca (Martel), Blanca
Vázquez (INFOTEC)

V0.4 19/05/2017 Add clarification on releases Federico M. Facca (Martel),
Netzahualcóyotl Hernández
(CICESE), Hugo Estrada
(INFOTEC)

V0.3 15/05/217 Integration of contributions
from partners plus minor
adjustments.

Francisco Monsanto
(UBIWHERE), Germán Molina
(HOPU), Miguel González
(ITESM), Alicia Martínez
(CENIDET), Hugo Estrada
(INFOTEC), Blanca Vázquez
(INFOTEC), Antonio Macías
(CICESE).

V0.2 26/04/2017 Version ready for comments
and integration by partners.

Federico M. Facca (Martel)

V0.1 15/04/2017 Table of Contents and initial
version.

Hugo Estrada (INFOTEC)

Disclaimer
The information, documentation and figures available in this deliverable, is written by the
SmartSDK (A FIWARE-based Software Development Kit for Smart Applications for the
needs of Europe and Mexico) – project consortium under EC grant agreement 723174 and
does not necessarily reflect the views of the European Commission. The European
Commission is not liable for any use that may be made of the information contained herein.

Copyright notice

© 2016 - 2018 SmartSDK Consortium

* R: Document, report (excluding the periodic and final reports)

DEM: Demonstrator, pilot, prototype, plan designs

DEC: Websites, patents filing, press & media actions, videos, etc.

OTHER: Software, technical diagram, etc.

Project co-funded by the European Commission in the H2020 Programme

Nature of the deliverable: R
Dissemination Level

PU Public, fully open, e.g. web ü
CI Classified, information as referred to in Commission Decision 2001/844/EC
CO Confidential to SmartSDK project and Commission Services

 D3.2: SmartSDK IoT and Data Management Enablers (V 1.0)

© SmartSDK Consortium 2016-2018 Page 3 of 44

EXECUTIVE SUMMARY

SmartSDK is the FIWARE’s “cookbook” for developing smart applications in the Smart City, Smart
Healthcare, and Smart Security domains. It refines, combines, and develops new FIWARE Generic
Enablers (GEs) and FIWARE Data Models into a set of well codified and ready to use solutions. This
is very important to facilitate the take up of FIWARE by new developers and its transition from proof
of concepts environment to productions ones.
As part of the compromises, SmartSDK initiative aims of developing new components for Internet of
Thing (IoT) and Data Management to be used in a variety of scenarios, for example: smart cities,
smart health and smart security. These components enable the developers to facilitate the use of
physical devices, manage and capture context data, and share it through FIWARE Cloud platform.
This chapter presents the advances in the components developed for Internet of Things and Data
Management tasks. The document presents two new hardware components developed for Internet of
Things: (I) Cloudino component represents a new component that extends the capabilities of the
Arduino platform to manage the connection of IoT devices with FIWARE. (II) Smart Sport
component introduces a new generation of IoT that enables the interaction with the environment and
the users, it is a device that allows users easily interact each other (e.g., suggestions, mailbox, and co-
creation) and / or to obtain additional information from any point of interest (e.g., tourism,
infotainment).
Moreover, in context of the Data Management module of FIWARE, this document presents three
components that are being developed in the project to improve current components to manage context
data produced by sensors and software applications. The first one will be used to retrieve NGSI
historical data with the underlying power of modern time-series oriented databases. The second will
brings a layer of encryption on top of sensible NGSI attributes, thus, data can be safely transferred to
the Context Broker. The third component consists on a NGSI library which is a new component that
enables developers to use mobile devices (e.g., smartphones) as context data producers by sharing
information related to alerts, such as the event, location and severity of the event.

 D3.2: SmartSDK IoT and Data Management Enablers (V 1.0)

© SmartSDK Consortium 2016-2018 Page 4 of 44

TABLE OF CONTENTS

EXECUTIVE SUMMARY .. 3	
TABLE OF CONTENTS ... 4	
LIST OF FIGURES .. 6	
LIST OF TABLES .. 7	
ABBREVIATIONS ... 8	
1	 INTRODUCTION .. 9	
1.1	 Structure of the deliverable ... 9	
1.2	 Audience ... 9	
2	 FIWARE REFERENCE ARCHITECTURE FOR IOT AND DATA
MANAGEMENT .. 10	
2.1	 Internet of Things Enablement services ... 10	
2.2	 Data/Context Management services ... 11	
3	 INTERNET OF THINGS ENABLEMENT SERVICES 12	
3.1	 Introduction and common characteristics ... 12	
3.1.1	 FIWARE Reference Architecture overview ... 13	
3.2	 Smart Spot .. 14	
3.2.1	 3.2.1 Architecture ... 15	
3.2.2	 Interaction with users by URL .. 18	
3.2.3	 Connection with Cloud servers ... 18	
3.2.4	 Status and Roadmap ... 19	
3.3	 Cloudino ... 21	
3.3.1	 Architecture .. 21	
3.3.2	 Connection Cloudino to FIWARE .. 23	
3.3.3	 Direct connection to FIWARE ... 23	
3.3.4	 Connection through and MQTT IoT Agent .. 25	
3.3.5	 Connection through Cloudino Cloud Service (Work in progress) 26	
3.3.6	 Status and Roadmap ... 26	
3.4	 ProximiThings Server ... 27	
3.4.1	 Architecture .. 27	
3.4.2	 Enabling OCB notifications to ProximiThings ... 29	
3.4.3	 Using proxemics interaction info from ProximiThings .. 30	
3.4.4	 3.4.4 Roadmap and Status .. 30	
3.5	 Roadmap of Internet of Things Enablement Services .. 32	
3.5.1	 Data Storage module for NGSI ... 32	
3.5.2	 Automatic connection module for NGSI .. 32	
3.5.3	 Energy saving configuration module for NGSI .. 32	
4	 4. DATA CONTEXT MANAGEMENT SERVICES .. 33	
4.1	 Introduction ... 33	
4.2	 Time Series for NGSI ... 34	
4.2.1	 Introduction ... 34	
4.2.2	 Architecture .. 34	
4.2.3	 Status ... 35	
4.2.4	 Roadmap ... 35	

 D3.2: SmartSDK IoT and Data Management Enablers (V 1.0)

© SmartSDK Consortium 2016-2018 Page 5 of 44

4.3	 NGSI Encryption Layer .. 36	
4.3.1	 Architecture .. 36	
4.3.2	 Status and Roadmap ... 37	
4.4	 SDK Library for NGSI ... 38	
4.4.1	 Architecture of the system .. 38	
4.4.2	 Status and Roadmap ... 39	
5	 CONCLUSION ... 40	
REFERENCES .. 41	
APPENDIX A – TIME-SERIES FOR NGSI INITIAL STUDY .. 42	

 D3.2: SmartSDK IoT and Data Management Enablers (V 1.0)

© SmartSDK Consortium 2016-2018 Page 6 of 44

LIST OF FIGURES

Figure 1: IoT Backend Device Management Architecture ... 10	
Figure 2: Data / Context Management Architecture ... 11	
Figure 3: An FIWARE context-aware, IoT-based and data intensive application. Derived
from a presentation by Juan Jose Hierro, FIWARE Chief Architect. 13	
Figure 4: Extended architecture with the Smart Spot and Cloudino connector
components to FIWARE IoT & Context Management Architecture 14	
Figure 5: Architecture of Open & Agile Smart Cities Solutions .. 15	
Figure 6: Smart Spot Hardware Architecture ... 16	
Figure 7: Smart Spot Cloud Connection Architecture .. 18	
Figure 8: Multi entity IoT Agent for Smart Spot .. 19	
Figure 9: Components of Cloudino ... 22	
Figure 10: Cloudino configuration screen for the direct connection to FIWARE 24	
Figure 11: Cloudino configuration screen for connection to FIWARE using MQTT
Agent .. 25	
Figure 12: Cloudino configuration screen for connection to FIWARE using Cloudino
Cloud Service ... 26	
Figure 13: five proxemics dimensions of ubicomp as defined by Greenberg et al. 27	
Figure 14: Architectural overview of the ProximiThings framework 28	
Figure 15: Architecture overview of NGSI TSDB Component .. 34	
Figure 16: Architecture overview of NGSI Attribute Encryption module. 36	
Figure 17: Example of selection of a data model without encryption. 37	
Figure 18: Example of selection of attribute to be encrypted. In this case, the attribute
location will be encrypted in the NGSI frame. ... 37	
Figure 19: Architecture of current NGSI Library ... 39	
Figure 20: Insert times (in seconds) for 1 and N=1000 updates ... 43	
Figure 21: Querying times (in seconds) for all the defined metrics 43	
Figure 22: Aggregation (mean) times (in seconds) for attributes of 1 and N=1000 entities
... 44	

 D3.2: SmartSDK IoT and Data Management Enablers (V 1.0)

© SmartSDK Consortium 2016-2018 Page 7 of 44

 LIST OF TABLES

Table 1: Smart Spot Specification Datasheet ... 16	
Table 2: The RESTful API provided by ProximiThings ... 29	
Table 3: Tested database versions ... 44	

 D3.2: SmartSDK IoT and Data Management Enablers (V 1.0)

© SmartSDK Consortium 2016-2018 Page 8 of 44

ABBREVIATIONS

BLE Bluetooth Low Energy

CKAN Comprehensive Knowledge Archive Network

DNS Domain Name System

GEs Generic Enablers

GSM Global System for Mobile

GPS Global Positioning System

IoT Internet of Things

I2ND Interface to Networks and Devices

LwM2M Lightweight M2M

SensorML Sensor Model Language

OCB Orion Context Broker

OGC Open Geospatial Consortium

OASC Open & Agile Smart Cities

OMA Open Mobile Alliance

MAC Media Access Control

MQTT Message Queue Telemetry Transport

POI Point of Interest

SDK Software Development Kit

 D3.2: SmartSDK IoT and Data Management Enablers (V 1.0)

© SmartSDK Consortium 2016-2018 Page 9 of 44

1 INTRODUCTION

This section presents the status of the components developed for Internet of Things and Data
Management. As stated before, new hardware components are being developed to manage the
integration of physical devices in smart applications and services. The following sections describe the
three main components under development in the project: The Cloudino that represents a new IoT
component that extends the capabilities of the Arduino platform to manage the connection of devices
to IoT and to send the data to the FIWARE Cloud. The Smart Spot represents the new generation of
IoT components that interact with the environment and with the users. The ProximiThings Server can
be integrated on IoT systems with FIWARE Platform to add proxemics interaction between objects
and people.

New software components are being developed to manage the data. The NGSI library is a new
software component that enable developers to use smartphones as context data producers, such as
alerts or the location of the system users. The Data Series component permits the analysis of context
data coming from system applications. The encryption components will enable developers to create
secure connections to send sensible information among the applications.

1.1 Structure of the deliverable

The deliverable is structured as follow:

è Section 2 presents the current FIWARE Reference Architecture for IoT and Data Management
services.

è Section 3 presents the contributions of the SmartSDK project related to the architectures
described in Section 2 about Internet of Things Enablement services. Three of them are strictly
related to the use of the Context Broker. The Smart Spot, Cloudino and ProximiThings are
presented in this section.

è Section 4 presents the contributions of the Smart SDK project related to the architectures
described in Section 2 about Data Management services. These include: NGSI Timeseries, a
complementary element in Cosmos which provides an updated version of Comet STH,
leveraging on the power of modern time-series databases; an NGSI Encryption Layer, that
supports the selecting encryption and decryption of NGSI data, and a SDK Library for NGSI to
connect several kinds of smartphones to Orion Context Broker via a NGSI RESTful interface
with the objective of sending context data for mobile contexts.

è Section 5 summarizes the contributions presented in this deliverable in the context of
SmartSDK.

1.2 Audience

This deliverable is mainly intended for:

è Developers and Operators interested into deploy FIWARE Smart applications in a production
context.

è Developers and Data experts interested into adopting FIWARE Data Models or contributing to
the initiative.

 D3.2: SmartSDK IoT and Data Management Enablers (V 1.0)

© SmartSDK Consortium 2016-2018 Page 10 of 44

2 FIWARE REFERENCE ARCHITECTURE FOR IOT AND DATA
MANAGEMENT

This section shortly summarizes the current FIWARE architecture for the Internet of Things
Enablement and the Data Management services.

2.1 Internet of Things Enablement services

FIWARE offers an original ecosystem that allow things to become available, searchable, accessible,
and usable context resources. To achieve that, FIWARE provides an IoT Backend Device
Management (IDAS) that is normally the central enabler at the IoT backend for most common
scenarios. This enabler allows IoT devices/gateways to connect to FIWARE-based ecosystems. IDAS
IoT Agents translate IoT-specific protocols into the NGSI context information protocol that is the
FIWARE standard data exchange model. The IoT Backend Device architecture is shown in Figure 1.

Figure 1: IoT Backend Device Management Architecture

The main components of the previous architecture are:
è IoT Agent: The IoT Agents are the software modules handling South IoT Specific protocols

and North OMA NGSI interaction. The minimum configuration of a Backend Device
Management GE in a FIWARE ecosystem includes at least one IoT Agent.

è IoT Manager: The IoT Agent Manager is an optional module that will interface with all the
IoT Agents installed in a datacenter throughout their Administration/Configuration API. This
will enable a single point to launch, configure, operate and monitor all IoT-Agents in a
FIWARE Ecosystem. It provides IoT Integrators with the ability of transforming devices
specific Data Models into the Data Models defined at the NGSI level by different verticals
(Smartcities, SmartAgrifood, Smartports, etc.).

è IoT Edge Management: The IoT Edge Manager is an optional module that will interface with
IoT end-nodes, IoT Gateways and IoT network APIs throughout their IoT Edge API in order to
operate and monitor the IoT Edge infrastructure that means connectivity, gateways and
devices.

SmartSDK proposes two new IoT components that can be applied in the project scenarios,
smart cities, smart security and smart health.

è Smart Spot, which is the infrastructure for the definition of a Smart POI (Point of Interest).
Smart POIs are areas of interest, consisting of a set of Smart Spots (the specific point of
connection) that broadcast a URL and create a physical space of information where everyone
can interact through mobile devices. Smart POIs connect physical objects / places with the

 D3.2: SmartSDK IoT and Data Management Enablers (V 1.0)

© SmartSDK Consortium 2016-2018 Page 11 of 44

smartphone to offer an interactive experience.

è Cloudino, an IoT component that facilitates the connection of microcontroller devices to the
Cloud. It is a modular and wireless implementation that integrate a new network layer for
microcontroller solutions that need to connect to the Cloud.

2.2 Data/Context Management services

The Data/Context Management Chapter1, depicted in Figure 1, contains the most relevant components
to build the data storage and processing part of the Smart services. The interconnection of these
components is implemented through FIWARE’s standardized interface NGSIv2 [9]. Application
developers, depending on their needs, can select to adopt any given subset of those components in
their applications.

Figure 2: Data / Context Management Architecture

The core components of the Data/Context Management Chapter include:

è Context Broker - Orion, the central element of the Data Context Management architecture,
allows both data producers and consumers to exchange data in different ways such as get/put
and publish/subscribe services.

è Big Data Analysis - Cosmos, the solution for the analysis of NGSI data sets, made of different
tools including the Short Time Historical data storage (STH Comet) and the integration with
different datastores (relational databases, big data filesystems, etc.) through the adaptation
capabilities provided by Cygnus.

è Stream Oriented - Kurento, an NGSI integrated multimedia server.

è CKAN - a repository for Open Data sets.

è Complex Event Processing (CEP) - Proton, an event-processing tool that identify patterns over
NGSI data and generate response over identified patterns.

In Section 3, we explain the contributions of the SmartSDK project related to the Data Management
Section. Two of them are strictly related to the use of the Context Broker, one by facilitating the
interaction with mobile devices and the other by adding a layer to provide privacy over Orion Context
Broker shared data. The third contribution is a complementary element in Cosmos which shares the
same goal as the Comet STH; but which leverages on the power of modern time-series databases.

1 https://catalogue.fiware.org/chapter/datacontext-management

 D3.2: SmartSDK IoT and Data Management Enablers (V 1.0)

© SmartSDK Consortium 2016-2018 Page 12 of 44

3 INTERNET OF THINGS ENABLEMENT SERVICES

3.1 Introduction and common characteristics

The Internet of Things (IoT) has been defined as a global infrastructure for the information society,
enabling advanced services by interconnecting (physical and virtual) things based on existing and
evolving interoperable information and communication technologies [2]. The IoT allows objects to be
sensed or controlled remotely across existing network infrastructure [3], creating opportunities for
more direct integration of the physical world into computer-based systems, and resulting in improved
efficiency, accuracy and economic benefit in addition to reduced human intervention [4]. According to
[5][6] the main components of IoT concept are:

è Things: physical and virtual things (cars, person, system...)

è Sensors: sense the physical environment (GPS, speed, gases, RFID...)

è Actuators: affect the physical environment (stability controller, fluid controller, AC motors...)

è Communication platform: type of middleware used to connect IoT components (objects,
people, services, etc.) to IoT (FIWARE, OpenIoT, Murano, ThingSpeak…).

è Network: IoT components are tied together by networks, using various wireless and wireline
technologies, standards, and protocols to provide pervasive connectivity (Bluetooth, WIFI,
Satellite...)

è Services: that processes the data obtained from sensors (Data analytics, store data, access to
devices...).

In all these components, the relevance of software and hardware is crucial. A physical thing may be
represented as a virtual thing (mappings of attributes and values). This thing can be associated a set of
sensors for monitoring features (such as temperature, velocity, heart rate). The sensors may be
communicated with other devices through a network (such as local or WIFI network) to send data,
data storage and data processing. Moreover, currently exists a set of platforms for IoT that provides
features as device management, charging and accounting, generic enable capabilities and so on.

FIWARE is a platform that provides a set of generic enablers that ease the development of Smart
Applications in multiple vertical sectors. Specifically, FIWARE provides a component to connect IoT
devices / gateways to FIWARE-based ecosystems called IDAS IoT Agent.

An IoT Agent is a component that translates IoT-specific protocols into the NGSI context information
protocol that is the FIWARE standard data exchange model. The advantages of using an IoT Agent is
that devices will be represented in a FIWARE platform as NGSI entities in a Context Broker. This
means that a user / device / system can query or subscribe to changes of device parameters status by
querying or subscribing to the corresponding NGSI entity attributes at the Context Broker.

Additionally, an IoT agent may trigger commands to actuation devices just by updating specific
command-related attributes in their NGSI entities representation at the Context Broker. This way, all
developers’ interactions with devices are handled at a Context Broker, providing a homogeneous API
and interface as for all other non-IoT data in a FIWARE ecosystem.

In this way, the use of an IoT agent provides a backend asset that can collect and store events from
physical devices with or without the presence of intermediate gateways. It is also capable of
forwarding commands to bidirectional devices (actuators). When the IoT Agent sends data to the
Context Broker, it allows us to manage all the whole lifecycle of context information including
updates, queries, registrations and subscriptions. In this way, the management of data from sensors
through IoT Agents and then to Context Broker is crucial to receive a notification (heat alert,
suspicious activities or fall or patient). All these features have achieved that IoT Agent is used in
different scenarios: tourism, agrifood, health and so on.

 D3.2: SmartSDK IoT and Data Management Enablers (V 1.0)

© SmartSDK Consortium 2016-2018 Page 13 of 44

Currently, the IoT Agent component has been deployed in the Smart SDK project. The component is
deployed in the Cloudino Connector and the Smart Spot devices. Both devices allow to obtain data
from gas sensors, temperature, relative humidity and location and the devices could be used in
concrete applications in scenarios of the SmartSDK project: smart city, smart health and smart
security.

For instance, in the smart city scenario the objective is to build an application with focus on supporting
the citizen mobility in high-polluted cities, like Mexico City, with the aim of improving the life quality
of citizens and fostering environmental friendly behaviours by citizens. The application aims to help
the final user to determine the best route to follow to reach a destination, considering the user profile
(such as health conditions), and the user preferences, such as transport type. To carry out this, this
scenario will use the Smart Spot and Cloudino to obtain data from weather condition, pollution, and
traffic jam.

The aim of smart security scenario is to develop applications to support the security guard to detect
and prevent risk situations. The Smart Spot and Cloudino can be used as mobile sensor to detect risk
situations involving cars inside a university campus.

3.1.1 FIWARE Reference Architecture overview

FIWARE provides a set of generic enablers that ease the development of Smart Applications in
multiple vertical sectors. The generic enablers are clustered according the FIWARE chapters: Cloud
Hosting, Data/Context Management, Internet of Things (IoT) Services Enablement,
Applications/Services Ecosystem and Delivery Framework, Security, Interface to Networks and
Devices (I2ND) and Advanced Middleware and Web-based User Interface. Each chapter describes a
set of high-level descriptions of the APIs that each FIWARE Generic Enabler (GE) exposes to
application developers or it uses to connect to another FIWARE GEs.

FIWARE provides a Reference Architecture to associate the different chapters of FIWARE. The
Architecture can be instantiated into a concrete architecture by means of selecting and integrating
products implementing the corresponding FIWARE GEs (i.e., products which are compliant with the
corresponding FIWARE GE Open Specifications). In this section, the reference architecture for
FIWARE context-aware, IoT-based and data intensive application have been analysed and extended.
This architecture is shown in Figure 3.

Figure 3: An FIWARE context-aware, IoT-based and data intensive application. Derived from a presentation

by Juan Jose Hierro, FIWARE Chief Architect.

 D3.2: SmartSDK IoT and Data Management Enablers (V 1.0)

© SmartSDK Consortium 2016-2018 Page 14 of 44

Data coming from remote sensors are collected through the IoT Backend Device Management GE for
sensors not offering a NGSI interface, whereas are sent directly to the Orion Context Broker for
sensors already NGSI enabled. From Orion Context Broker data can be dispatched to other tools for
elaboration, processing and analysis (Complex Event Processing GE or Big Data Analysis GE).
Moreover, through the Context Broker data can be exported to CKAN GE, which is an enabler for
open data management. Client applications or dashboards query the data in order to provide to the user
a visual representation.

As part of the objectives of Smart SDK project is the development of Enablers to support the
realization of IoT-based Smart Applications, then two enablers are being developed: Smart Spot and
Cloudino Connector. The final objective is each enabler will be a FIWARE IoT Ready. These enablers
have extended the Reference Architecture of FIWARE.

The extension is in two main ways. Firstly, the Smart Spot will be a pioneer component in FIWARE
IoT Ready, this is because the Smart Spot will implant the hierarchy concept inside the FIWARE
components. Secondly, the Cloudino Connector is a component that can connect to the FIWARE
Context Broker without an IoT-Agent, using the simple Cloudino configuration Web Interface. The
new components have extended the Architecture reference by FIWARE.

Then, these new IoT components have extended the FIWARE Architecture reference. In this extended
architecture, the data coming from Smart Spot (for instance gases, temperature, humidity, location) are
collected through the IoT Backend Device Management GE for sensors not offering a NGSI interface.
On the other hand, the Cloudino connector has a special connection to send data directly to Orion
Context Broker, using a NGSI interface. From Orion Context Broker data can be dispatched to other
tools for elaboration, processing and analysis (Complex Event Processing GE or Big Data Analysis
GE). Moreover, through the Context Broker open data can be exported to CKAN GE. Client
applications or dashboards query the data to provide to the user a visual representation. This extended
architecture is shown in Figure 4.

Figure 4: Extended architecture with the Smart Spot and Cloudino connector components to FIWARE

IoT & Context Management Architecture

3.2 Smart Spot

A Smart Spot provides the ability of create an area of interaction with citizens and visitors. Thereby,

 D3.2: SmartSDK IoT and Data Management Enablers (V 1.0)

© SmartSDK Consortium 2016-2018 Page 15 of 44

People can connect with online content, discover webs from the physical places and the different
digital services linked to the Smart point of interaction (Smart POI), such as booking, payment,
participation, real time monitoring, etc.

è Physical Web technology links physical spaces with Digital Services through Web technology.
Interact through your smartphone/tablet without any App required.

è Smart Spot makes use of Bluetooth Low Energy and WiFi technologies to send “push”
messages to any Smartphone.

è Fully integrated with FIWARE and oneM2M. Creates Open and Agile Smart Cities.

3.2.1 3.2.1 Architecture

The platform and management of the Smart Spot is based entirely on FIWARE and open standards
such as OMA LwM2M, Physical Web, OMA NGSI and other technologies based on Open standards
that guarantee the system is not locked into proprietary or unique vendor solutions. Figure 5 presents
the architecture of the open and agile platform for Smart Cities solutions.

Figure 5: Architecture of Open & Agile Smart Cities Solutions

The Platform is responsible for interacting, obtaining and integrating data from different environments
or data sources with which it must interact. In particular, the following functionalities are offered:

è IoT sensors / actuators: This component interacts with entities such as devices (sensors and
actuators) or smartphones, integrating the diversity of formats, protocols or technologies that
can be found in a Smart City. In details, the protocol will preferably be OMA LwM2M, OMA
NGSI, MQTT and also SensorML of OGC (Open Geospatial Consortium), and that constitutes
a model of description of the resources in general, being these devices or other systems. The
IoT Devices Integration component has as fundamental responsibility to interact and integrate
all those devices belonging to urban services of the city such as: environmental sensors,
parking sensors, measures reported by traffic control elements, beacons etc. In addition to
supporting the protocols, advanced support for semantic integration is offered that allows
integration of the measurements sent by the different heterogeneous systems and offers a
common integration via semantics (such as the OMA NGSI data models).

è Integrations aligned with the OMA NGSI standard and the FIWARE / OASC

 D3.2: SmartSDK IoT and Data Management Enablers (V 1.0)

© SmartSDK Consortium 2016-2018 Page 16 of 44

specifications: The platform is oriented to the implementation of scenarios with control and
support of interactivity, such as reaction to events, alarms, etc. based on a modular architecture
for context management (according to OMA NGSI) that manage the relevant information and
maintain the state for any type of defined entity. This architecture plays a strategic role in the
face of interoperability and integration, since it guarantees the horizontality of the information,
so that any data of the platform can be consulted through a subscription process based on open
standards. This ensures the availability of updated data on the actual state of the ecosystems
integrated in the platform. In addition, this component will receive all the data from the various
sources and implement the publication / subscription mechanisms that make it possible to
circulate information between the producers and the consumers of the same.

The communication between the different actors that interact in the management of contexts is done
through a RESTful OMA NGSI interface. Inspired by the standard OMA NGSI specification, which
defines an interface capable of handling any type of data, including metadata. At the same way support
and integration with other existing platforms is also supported.

è Interaction with the citizen (Physical Web) via personal / mobile devices: One of the
advantages of the proposed architecture in relation to other solutions in the market is its
orientation to- wards promoting citizen participation, co-creation and interaction through
mobile services. That is why architecture integrates beacons that offer a direct way of
interacting with the user, promoting places, offering information and above all collecting the
opinions / ideas of citizens.

The following image represents the Smart Spot Hardware Architecture.

Figure 6: Smart Spot Hardware Architecture

Table 1: Smart Spot Specification Datasheet

Enclosure Outdoor protection IP55 (Resistant to water and dust)

Radio Interfaces

2 x 802.11 b/g/n/e/i (802.11n @ 2.4 GHz
up to 150 Mbit/s) – STA-AP/Sniffer

1 x Bluetooth Low Energy Beacon (Eddystone / Physical Web)

1 x M2M Connectivity (Cellular GPRS) - SIM card

MCU Core / Clock Speed Tensilica Xtensa dual-core 32-bit LX6 / 240MHz

 D3.2: SmartSDK IoT and Data Management Enablers (V 1.0)

© SmartSDK Consortium 2016-2018 Page 17 of 44

Internal Memory 16 MB

Cellular Quad-band 850/900/1800/1900MHz (GPRS - Class 12 modem)

Hardware accelerated
encryption AES / SHA2 / Elliptical Curve Cryptography / RSA-4096

External Interfaces

I2C Probe and ADC (GPIO) interface for external sensors

- Temperature and humidity Probe.
- Environmental monitoring Probe.
- Noise/acoustic Probe.

Dimensions 80mm x 80mm x 36mm (IP55 encapsulation)

Temperature Range -20 oC to 80 oC operating temperature

SIM Card Slot Nano SIM Card Connection -12,3mm x 8,8mm (4FF)

Power Supply 5V (USB compatible)
Battery Charger Li-ion battery charger

Internal Battery Connection JST 1.0 Connector (1200mAh Li-on internal battery)

Energy Harvesting Solar Panel + 10000mAh external battery (IP65 protection)
Bluetooth Low Energy

Co-Processor Texas Instrument CC2541

Wi-Fi Co-Processor Expressif ESP8266

Cellular GPRS Co-Processor Simcom SIM868

GPS Outdoor Location GPS L1 C/A code - 22 tracking/66 acquisition channels

Antennas

External Antenna WiFi 802.11 b/g/n/e/i (STA-AP)

Internal PCB Antenna WiFi 802.11 b/
g/n/e/i (Sniffer - Crowd Monitoring - SmartPhone Detection)

External Antenna GSM/GPRS (Cellular)

External Antenna Bluetooth Low Energy

Software Full Stack

IPv4 / IPv6 Connectivity – Internet of Things

RESTFul (HTTP / CoAP) – Web of Things

OMA LwM2M Device Management (Firmware Upgrade Over the
Air)
FIWARE NGSI Data Models / ETSI CIM
(POI + Device + Extensions)

 D3.2: SmartSDK IoT and Data Management Enablers (V 1.0)

© SmartSDK Consortium 2016-2018 Page 18 of 44

3.2.2 Interaction with users by URL

Smart POIs (Smart Point of Interaction) are strategic smart areas of interest (POI) where can
be accessed digital content geolocated at a specific physical point of interest. This is thanks to
a set of Smart Spots (the specific point of connection that use similar beacon technology) that
send a URL and create a physical space of information where everyone approaching can
collaborate through a smartphone, tablet and with another smart device. Therefore, Smart
POIs connect physical objects or places with the smartphone to offer an interactive and
multimedia experience. This technology allows to directly open a responsive Web App that
contains information designed to answer a specific topic, including text, videos, images and
any multimedia material. The devices work by proximity (20 meters) both outdoors and
indoors. Smart POIs have a multitude of possibilities for the tourism industry, such ailing the
information gaps existing in the cities, and connecting the consumer with services and
products related to the sector, proximity marketing, geographic targeting, and content
broadcasting.

3.2.3 Connection with Cloud servers

The diagram of the figure 7 represent the current mode for connecting a Smart Spot that
represent a multi entity model to the Orion Context Broker.

Figure 7: Smart Spot Cloud Connection Architecture

1. The Smart Spot connect with the bootstrap server, this bootstrap server create the configuration
need in the Smart Spot for connecting with the desired servers.

2. As the IoT Agent does not support multi entity, The Smart Spot has to connect with different
IoT Agent.

3. Each IoT Agent manage a different NGSI entity on the Orion Context Broker.

4. The user can read and change the Smart Spot measurement and status through the Orion
Context Broker.

The Method has many disadvantages, the device has to maintain several connections increasing the
power and data consume. Several IoT Agents have to be maintained. The Smart Spot configuration
has to be written in different services.

For that reasons we have proposed an alternative (Figure 8), this alternative consist in a multi entity
IoT Agent, this enabler will resolve all the precious problem, some of them critical for an IoT device

 D3.2: SmartSDK IoT and Data Management Enablers (V 1.0)

© SmartSDK Consortium 2016-2018 Page 19 of 44

like the Data and Power Saving and the single service configuration.

Figure 8: Multi entity IoT Agent for Smart Spot

1. The Smart Spot connect with the bootstrap server, this bootstrap server create the configuration
need in the Smart Spot for connecting with the desired servers, in this case only one multi
entity IoT Agent.

2. The Smart Spot connect with the multi entity IoT Agent.

3. The IoT Agent manage all the different NGSI entities on the Orion Context Broker.

4. The user can read and change the Smart Spot measurement and status through the Orion
Context Broker.

This alternative way for connection the IoT devices is introduced in the Hopu roadmap.

3.2.4 Status and Roadmap

The following features have been implemented in the period covered by this report:

è IoT Agent Fixes: For the correct behavior of the device, some corrections were made in this
FIWARE enabler, this correction were about the way of manage the LwM2M protocol and
they were merged in the master branch by the repository manager.

è BLE Physical Web capability in Smart Spots: The device is able to broadcast the desired URL
via Bluetooth using the google protocol eddystone URL and giving to the device de capability
of send physical webs to the users.

è Device URL Manager: This service provide to the user the capability of admin the URL
broadcasted by the devices seamless, it also provide some statistics like the number of
interactions. Now days this service is used by an API REST but we are working in a user
interface to facilitate the user's interactions. This tool is used for manage the physical web URL
of any device by software. A smartphone will detect an eddystone URL advertisement with a
fixed device URL that point to the Device URL Manager, then the Device URL Manager will
redirect the request to the real URL.

*shortened mac: is a normal mac without the two dots

Create Device:
Method: POST
URL: /api/v1/devices
URL Params: None
Data Params: application/json
Body:

 D3.2: SmartSDK IoT and Data Management Enablers (V 1.0)

© SmartSDK Consortium 2016-2018 Page 20 of 44

{
 "mac": "001122334455",
 "external_url": "https://google.es/"
}

Successful Response:
Code: 201 (Created)
Content:
{
 "mac": "001122334455",
 "external_url": "https://google.es/"
}

Error Response:
Code: 400 (Bad Request)
Content:
{
 "bad_field_name": [error causes]
}

Show Device Data:
Method: GET
URL: /api/v1/devices/:shortened_mac
URL Params: shortened_mac=[String]
Data Params: None

Success Response:
Code: 200 (Ok)
Content:
{
 "mac": "001122334455",
 "external_url": "https://google.es/"
}

Error Response:
Code: 404 (Not Found)
Content:
{
 "detail": "Device Not Found"
}

Update Device Data:
Method: PUT
URL: /api/v1/devices/:shortened_mac
URL Params: shortened_mac=[String]
Data Params: application/json
Body:
{
 "mac": "001122334455",
 "external_url": "https://google.es/"
}

Success Response:
Code: 200 (Ok)
Content:
{
 "mac": "001122334455",
 "external_url": "https://google.es/"
}
Error Response:
Code: 404 (Not Found)

 D3.2: SmartSDK IoT and Data Management Enablers (V 1.0)

© SmartSDK Consortium 2016-2018 Page 21 of 44

Content:
{
 "detail": "Device Not Found"
}

è GSM Module: Thanks to this module, the Smart Spot has the capability of sending data using a

micro sim with data. This module also has manage features like connection handle
disconnections, use the cheaper connection available, reconnect if is possible and improve the
power saving. This module also provide to the Smart Spot the capability of by localized via
GPS, this feature is interesting when we are trying to improve mobile entities.

è Smart Spot Data Model: For the correct integration of the Smart Spot in the FIWARE
ecosystem, we have been working in a NGSI data models approved and certificated by
FIWARE Community. https://github.com/Fiware/dataModels/tree/master/PointOfInteraction

Roadmap for the Smart Spot can be grouped in three steps:

è Sensor integration: For this project will be integrated several sensors, likes temperature,
humidity, air quality and accelerometer, some of this sensors have to be defined in the OMA
protocol and conveniently parsed to NGSI entities.

è Improve IoT Agent: because of the problem described in the previous section (3.2.3), we have
to improve the IoT Agent enabler with the finality of save data and communications.

è Offline gathered data: The device must be able to send the data measured will the connection
was unreachable.

3.3 Cloudino

Cloudino is a full stack IoT platform that provides all necessary
components to transform the existing microcontroller’s solutions
(Atmel AVR, Microchip PIC, etc.) to the IoT world.

Cloudino was designed thinking in three main characteristics to take
to reality the vision of the Internet of Things: small size, easy to use
and low cost hardware, and with these characteristics, the Cloudino
allows to everyone the possibility to incorporate IoT technologies in
their projects without any technical or economical limitations.

3.3.1 Architecture

The Cloudino proposes to add a new IoT Chip that works like a configurable Network Layer between
the existent hardware solutions (Microcontrollers, Sensors or Actuators) and the Cloud Services, for a
simple and fast start to IoT World. The platform consists of three main components, which can work
together or independently.

 D3.2: SmartSDK IoT and Data Management Enablers (V 1.0)

© SmartSDK Consortium 2016-2018 Page 22 of 44

Figure 9: Components of Cloudino

The first component is the Cloudino API, which has a specific implementation for different
microcontroller solutions (Arduino, Intel Edison, PICs, etc.), the function of the API is to isolate the
microcontroller code to the specific IoT protocol, this mean that the programmers can use the same
code for send data to a MQTT Server or to an Orion Context Broker or to the Cloudino Server
without doing any change to the source code, only configuring the specific protocol in the networking
layer.

Another of the main components is the Cloudino WiFi Connector, which is a little, inexpensive and
powerful IoT Chip, that has preprogrammed the most common IoT protocols like a MQTT or the
NGSI for the Orion Context Broker, that allows everyone to start sending information to the Cloud
without any additional programming effort. The Cloudino WiFi Connector can be seen as an IoT
Router that can be configured using a simple web browser.

Another important characteristic of the Cloudino WiFi Connector is that can working in parallel with
Arduino and can be used as an Arduino Cloud Programmer.

The Cloudino WiFi Connector can be used as an
additional microcontroller dedicated to the network
layer, working in parallel with actual microcontroller
solutions like Arduino. Also can be used as a standalone
device for directly communicate the real-life objects to the
internet.

The Cloudino WiFi Connector has 10 digital GPIOs and
one analog GPIO, that we can use for connect sensors and
actuator directly to the chip and can be programmed using
and JavaScript Engine that is working inside the chip.

The Cloudino WiFi Connector can be configured to connect to any cloud service, however in order
to get the best out of the solution, the platform contains the Cloudino Server, which includes all the

 D3.2: SmartSDK IoT and Data Management Enablers (V 1.0)

© SmartSDK Consortium 2016-2018 Page 23 of 44

components needed to manage devices from anywhere in the world.

The use of the Cloudino Server is optional; however, it has many advantages over existing services,
such as Devices, Rules and User Contexts Manages, and Stream Data Storage.

The Cloudino Server includes also web IDE that allows devices to be programmed and debugged via
Cloud and it includes an easy "Blocks programming interface" for non-experimented programmers.

3.3.2 Connection Cloudino to FIWARE

Cloudino WiFi Connector can be integrated with FIWARE above-described FIWARE IoT
ecosystems using different mechanisms:

è Direct Connection.

è Connection via MQTT IoT-Agent.

è Connection via Cloudino.io cloud service.

The simple’s way to integrate Cloudino to FIWARE is the Direct Connection; this is configuring the
Cloudino WiFi Connector to send direct data to the OCB without any IoT Agent. This configuration is
very convenient if the solution only contain sensors that periodically reports the status to the server
and where do not require any feedback from the server side.

If the solution require feedback from the server side, the Connection via MQTT IoT Agent could be
used. This option is very convenient considering that you have the opportunity to send and receive
messages more efficiently; however, another component is required to be configured and maintained.

Perhaps the best way to connect the Cloudino to FIWARE is to use the Service of Cloudino Server,
because Cloudino acts such as an IoT Agent, which not only allows the sending and reception in real
time of messages, but also allows the administration of the devices, the possibility to create rules of
communication between the devices and besides having a development environment that allows the
programming of the devices via cloud.

3.3.3 Direct connection to FIWARE

Cloudino WIFI Connector can connect to the FIWARE Context Broker without an IoT-Agent, using
the simple Cloudino Configuration Web Interface.

The Cloudino Connector starts an WiFi Access Point that lets you connect to the configuration web
interface at: http://192.168.4.1

To use a direct connection to FIWARE Context Broker, the option of Orion Context Broker
inside the Server Configuration need to be selected by the developer, and the following fields need to
be configured: The DNS and the Port of the OCB Server, the URL, User and Password for get the
authentication token (https://orion.lab.fiware.org/token, only in case that the OCB Server needs it), and
the entity definition template used for create the initial entities.

 D3.2: SmartSDK IoT and Data Management Enablers (V 1.0)

© SmartSDK Consortium 2016-2018 Page 24 of 44

Figure 10: Cloudino configuration screen for the direct connection to FIWARE

Once configured the protocol to be used to send data to the cloud, the next step is to configure the
WiFi network to be used by the device to connect to the internet, this can be done selecting the WiFi
Configuration Option on the menu.

Once the Cloudino WiFi Connector is configured to access the internet, the next step is to program the
specific logic to perform the functions of collection and sending data to the cloud, for which there are
two possibilities:

Firstly, it is to use the Cloudino WiFi Connector as a WiFi Bridge between an Arduino and the
Cloud, connecting the Sensors and Actuators to the Arduino and programming in the Arduino the
specific logic to send data to the cloud through the Cloudino WiFi Connector.

Example of Arduino Code to Post Temperature and Humidity

#include <Cloudino.h>
#include <dht11.h>

#define DHT11PIN 8

Cloudino cdino; //Cloudino Library
dht11 DHT11; //DHT11 Library

void getSensor()
{
 int chk = DHT11.read(DHT11PIN);
 cdino.post("temperature",String((float)DHT11.temperature,2));
 cdino.post("humidity",String((float)DHT11.humidity,2));
 cdino.print("Timer done!"); //Send to console
}

void setup()
{
 cdino.setInterval(10000,getSensor); //Timer every 10 seconds
 cdino.begin();
}

void loop()
{
 cdino.loop();
}

Secondly, it is to use the Cloudino WiFi Connector to directly connect the sensors and actuators to
the device and programming in it the specific logic for collecting and sending data to the cloud using
the JavaScript interpreter integrated in the Cloudino WiFi Connector.

 D3.2: SmartSDK IoT and Data Management Enablers (V 1.0)

© SmartSDK Consortium 2016-2018 Page 25 of 44

Example of CloudinoJS to Post Temperature and Humidity

//import Cloudino, Timer and DHT11
require("Cloudino");
require("Timer");
require("DHT11");

//Create timer every second 5s(5000ms)
setInterval(function(){
 //Read DHT11 on GPIO 14
 var sens=DHT11.read(14);
 //Post temperature an humidity data to defined Server
 Cloudino.post("temperature",sens.temperature);
 Cloudino.post("humidity",sens.humidity);
},5000);

Example of request to FIWARE Context Broker

curl orion.lab.fiware.org:1026/v2/entities/MyHouse -X GET -s -S \
 --header 'Accept: application/json'\
 --header "X-Auth-Token: $AUTH_TOKEN" | python -mjson.tool

3.3.4 Connection through and MQTT IoT Agent

Cloudino WiFi Connector can connect to the FIWARE using MQTT IoT-Agent, using the simple
Cloudino Configuration Web Interface.

The Cloudino WiFi Connector starts an access point that lets you connect to the configuration web
interface at: http://192.168.4.1

To use a MQTT Protocol to connect to FIWARE Context Broker, the option of MQTT Server inside
the Server Configuration need to be selected by the developer, and the following fields need to be
configured: The active field need to be true, the DNS, Port, User and Password of the MQTT IoT
Agent need to be specify.

Finally, it is necessary to define the routes of publication and subscription for filtering messages,
based on these routes the device will send and receive messages or properties that would be part of the
entity stored in the Orion Context Broker. However, the end configuration to connect to the Orion
Context Broker will have to be defined on the side of the MQTT Agent.

Figure 11: Cloudino configuration screen for connection to FIWARE using MQTT Agent

Once configured the protocol to be used to send data to the cloud, the next step is to configure the

 D3.2: SmartSDK IoT and Data Management Enablers (V 1.0)

© SmartSDK Consortium 2016-2018 Page 26 of 44

WiFi network and program the specific logic to perform the functions of collection and sending data
to the cloud, for do this you can follow the steps described in the section of Direct Connection to
FIWARE

3.3.5 Connection through Cloudino Cloud Service (Work in progress)

Cloudino Connector can connect to the FIWARE using Cloudino Cloud Service, using the simple
Cloudino Configuration Web Interface.

The Cloudino Wifi Connector starts an access point that lets you connect to the configuration web
interface at: http://192.168.4.1

To use the Cloudino WiFi Connector to connect to FIWARE Context Broker through Cloudino
Server, the option of Cloudino Server inside the Server Configuration need to be selected by the
developer, and the following fields need to be configured: The active field need to be true, the DNS,
Port and Auth Token need to be specify.

Figure 12: Cloudino configuration screen for connection to FIWARE using Cloudino Cloud Service

The Authentication Token can be obtained by registering on the cloudino.io platform and creating a
device to link to the Cloudino WiFi Connector.

Once configured the protocol to be used to send data to the cloud, the next step is to configure the
WiFi network and program the specific logic to perform the functions of collection and sending data
to the cloud, for do this you can follow the steps described in the section of Direct Connection to
FIWARE

3.3.6 Status and Roadmap

Currently the development of the Cloudino is ongoing; however, it is already in a fully functional
stage. The main development efforts are focused on the one hand in the development of new devices
for the platform with other mechanisms of data transmission, such as:

è Cloudino GSM Connector

 D3.2: SmartSDK IoT and Data Management Enablers (V 1.0)

© SmartSDK Consortium 2016-2018 Page 27 of 44

è Cloudino Lora Connector

è Cloudino SigFox Connector

On the other hand, the development of Cloudino Server is continued to make it not only an IoT
Solution Development Platform, but also a Data Broker that implements the main existing protocols
used in the IoT.

The current working prototype of Cloudino can be found at https://github.com/Cloudino

3.4 ProximiThings Server

ProximiThings is a FIWARE-enabled framework for the incorporation of proxemic interaction
capabilities in IoT systems. The five dimensions of proxemics for ubicomp defined by Greenberg et al.
(see Figure 13) constitute the basis for building proxemic interactions. These five dimensions are
distance, orientation, location, movement and identification. These dimensions can be measured by
different approaches, and using different types of devices. For instance, the distance between a person
and an (smart) object could be measured by a Kinect placed alongside the object, but it could also be
measured with a small board having an ultrasonic sensor. In both cases, although the particular device
may vary, the principle is the same and consists of measuring the round trip time of the infrared signal.
We are using Orion Context Broker as a Context Consumer to get sensor information for further
conversion into interaction information.

Figure 13: five proxemics dimensions of ubicomp as defined by Greenberg et al.

3.4.1 Architecture

Given the limitations in processing, connectivity and synchronization on the part of the IoT devices,
we propose the implementation of a cloud service to overcome such limitations. For this, we are using
Orion Context Broker, which allows the storage of context information; it has a RESTful API based
on JSON for the CRUD methods of entities and context information. Orion also has methods to notify
about updates about context information, using Webhooks with HTTP for this purpose. ProximiThings
obtain information from entities through HTTP notification from Orion Context Broker.

ProximiThings Server will store the proxemics dimensions information for further conversion into
interaction information. For efficient communication between the Orion Context Broker and IoT
devices, we will use IoT Agents (GE) that support the MQTT protocol. This component maps
information received by devices in plain text format to an appropriate JSON format to perform context
information updates in the Orion Context Broker.

The FIWARE platform does not have any component or GE to allow processing proxemics related
information, so this is the main reason why the ProximiThings Server is developed. ProximiThings
uses the notification service of the Orion Context Broker to receive updates from the devices
concerning the proxemic dimensions; also, through the RESTful API it updates context parameters in
the entities.

Information about proxemics dimensions is received in continuous units and is in turn converted into
discrete units, turning the Orion Context Broker into a Proxemics Provider. This discrete information
is made available to other systems (Proxemics Consumers) through a RESTful API. There are three
components or modules in ProximiThings Server: Proxemics Data Conversor, User Interaction Rules
and Proxemics Actions.

 D3.2: SmartSDK IoT and Data Management Enablers (V 1.0)

© SmartSDK Consortium 2016-2018 Page 28 of 44

Figure 14: Architectural overview of the ProximiThings framework

Proxemics data conversor is a module of the ProximiThings which allows proxemics data received
in continuous units to be converted into discrete units. It is also the module directly connected to the
Orion Context Broker to receive updates concerning the measurements of proxemic dimensions. The
Orion Context Broker manages context data from the entities received by the devices, and this data can
be obtained in several ways. For instance, distance can be measured with IR or optical sensors;
identity may be obtained using any type of link, including RFID, NFC, Bluetooth or IR; motion can be
detected with a simple IR sensor or with a more complex computer vision system that tracks objects.
Therefore, ProximiThings is flexible, as it is not tied to any particular set of sensing devices to
generate proxemics information.

User interaction rules is a module intended for developers to set interaction rules based on the
discretized proxemic dimensions, in order to trigger actions or commands define in the Proxemics
Actions module. Each command may have multiple interaction rules, and these rules are a subset of
possible values that a proxemic dimension could have. For instance, if we wish to show information
on a display to a specific person, the rules shown in Table 2 should be set.

Proxemics actions. When a user-defined proxemic interaction rule is met, a command stored in this
module is executed. There can be two types of command: 1) a message to be transmitted via MQTT to
IoT devices or 2) an HTTP callback (webhook) including the command and values of the proxemic
dimensions of the entities. Each IoT device supports different functions and the MQTT message
should specify the function and the data needed for executing that function. Some of the functions
executed by ProximiThings in the devices are the transmission of codes via IR, and the interruption of
electrical flow.

The HTTP callback allow the incorporation of other cloud services, such as IFTT, so ProximiThings
can then be linked to services such as Facebook, Twitter, Dropbox, etc. Another important element of
ProximiThings is its RESTful API, which allows developers to incorporate proxemics capabilities into
their IoT systems. This API has support for CRUD operation in interaction rules (User Interaction
Rules), actions to be executed (Proxemics Actions), as well as for user profiles and to consult
information from any entity of a IoT environment. This is performed as a REST service which
responds in a JSON format. This way, developers can have a REST client to update or consult
information, but also create their own interfaces to show relevant information.

 D3.2: SmartSDK IoT and Data Management Enablers (V 1.0)

© SmartSDK Consortium 2016-2018 Page 29 of 44

Table 2: The RESTful API provided by ProximiThings

Method PATH Description

GET /config/rules Show prox. interaction rules being monitored for execution
of command

POST /config/rules Create a new proxemic interaction rule

POST /config/rules/{RuleID} Updates a proxemic interaction rule

DELETE /config/rules/{RuleID} Deletes a proxemic interaction rule

GET /config/actions Show actions and commands to be executed

POST /config/actions Create a new action

POST /config/actions/{ActionID} Updates an action or command to be executed in a device

DELETE /config/actions/{ActionID} Deletes an action or command to be executed in a device

GET /dev/{EntityID} Show proxemic information of an entity by providing its ID

POST /dev Creates a new device in the server and in the FIWARE
platform

3.4.2 Enabling OCB notifications to ProximiThings

In order to integrate ProximiThings to OCB, we need to create a subscription on OCB to send
proxemics dimension data to ProximiThings every time that devices update measurements.

Example to create a notification on OCB to send data to ProximiThings

 D3.2: SmartSDK IoT and Data Management Enablers (V 1.0)

© SmartSDK Consortium 2016-2018 Page 30 of 44

3.4.3 Using proxemics interaction info from ProximiThings

After ProximiThings detects an interaction, using proxemics dimensions measurements comparing
with proxemics rules. If these rules are equal to proxemics dimensions measurements, then
ProximiThings executes one of these:

1. MQTT messages to devices

2. Webhooks

MQTT Message to device: We can provide a message to a device to change its configuration or some
functionality. For example, a user is near and in front of her computer (inside the personal proxemic
zone). We can send a message to her computer to unlock or turn on the computer.

 WebHooks: We can execute an URL via HTTP to callback another webservice or RESTful API.

3.4.4 3.4.4 Roadmap and Status

The current working prototype of ProximiThings (not a stable version) can be found at
https://github.com/faxterol/ProximiThings-Server

In the period of this report, we made the architecture of ProximiThings and we made an evaluation of
components from FIWARE Platform to use on ProximiThings.

ProximiThings is developed in three big steps:

è API REST for create, update, read and delete (CRUD operations) Rules Interactions and
Actions.

è Engine for receive data from OCB and convert sensor data measurements on discrete
information.

è A service to execute HTTP callbacks and send data throught MQTT.

 D3.2: SmartSDK IoT and Data Management Enablers (V 1.0)

© SmartSDK Consortium 2016-2018 Page 31 of 44

Now, we are working on the first step and we will publish the code on the repository of GitHub. Some
resources from API REST of ProximiThings has been implemented. For example:

Example of add a RuleInteraction on ProximiThings API REST

 curl -X POST \
 http://127.0.0.1:6253/config/rules \
 -H 'accept: application/json' \
 -H 'cache-control: no-cache' \
 -H 'content-type: application/json' \
 -H 'postman-token: bb257ce2-dc0c-c9c0-24a3-03c33be9961b' \
 -d '{
 "name" : "Water save on sink",
 "description": "Interaction rules for save water on sink when Prof. Smith is not
using it.",
 "entities" : [
 {
 "entity_id" : "ProfSmith",
 "proxemics_rules" : {
 "zone" : "PERSONAL|INTIMATE",
 "orientation" : "FRONT_OF:SinkKitchen",
 "movement" : "*",
 "interaction_phase" : "DIRECT",
 "location" : "ProfSmithKitchen"
 }
 },
 {
 "entity_id":"SinkKitchen",
 "proxemics_rules" : {
 "zone" : "PERSONAL|INTIMATE",
 "orientation" : "FRONT_OF:ProfSmith",
 "movement" : "IDLE",
 "interaction_phase" : "DIRECT",
 "location" : "ProfSmithKitchen"
 }
 }
],
 "commands_rules_apply" : [
 {
 "entity_id" : "SinkKitchen",
 "command" : "locker_faucet_open"
 }
],
 "commands_rules_not_apply" : [
 {
 "entity_id" : "SinkKitchen",
 "command" : "locker_faucet_closed"
 }
]
}'

Example of add a Proxemics Action on ProximiThings API REST

 curl -X POST \
 http://127.0.0.1/%7D:6253%7D/config/actions \
 -H 'accept: application/json' \
 -H 'cache-control: no-cache' \
 -H 'content-type: application/json' \
 -H 'postman-token: 93c9e03a-dab3-5990-9df7-4e9d902771d1' \
 -d '{
 "identifier" : "locker_faucet_open",
 "entity_id" : "SinkKitchen",
 "name" : "Open water flow of faucet",
 "description": "This command open water flow on faucet to save water when Prof.
Smith is in the kitchen.",
 "type_action" : "mqtt_msg",
 "action" : {
 "publish_message" : "{'\''water_flow'\'':'\''on'\''}"
 }
}'

 D3.2: SmartSDK IoT and Data Management Enablers (V 1.0)

© SmartSDK Consortium 2016-2018 Page 32 of 44

The next 6 months, we will have developed the three big steps so next to made an evaluation of
ProximiThings on some IoT environments.

3.5 Roadmap of Internet of Things Enablement Services

This section presents the Roadmap and the next steps to follow inside the IoT Backend Device
Management Architecture Chapter. The components presented in the section are under development
and will be completed in second phase of the project.

3.5.1 Data Storage module for NGSI

The objective of this component is to allow the IoT devices to store data context when the device does
not have access to some internet connection to send the data online. In this context, this is a software
component that will allow developers to configure a specific sensor (which contain a hardware
component to save information in internal or external memory) to enable the store of information
when the device is disconnected. Due that, this component is really close to hardware configuration of
the sensor; in this project, we will provide the component only for Smart Spot and Cloudino
technologies.

3.5.2 Automatic connection module for NGSI

The objective of this component is create a module to enable the automatic upload of gathered data
when the hardware component detects an internet connection. One of the possible scenarios we can
find in practice is that mobile sensor could be located in placed without any internet connection. In this
scenario, it is necessary to configure the device to enable the automatic connection when an internet
connection is available. Due that, this component is really close to hardware configuration of the
sensor, in this project, we will provide the component only for Smart Spot and Cloudino technologies.

3.5.3 Energy saving configuration module for NGSI

The objective of this component is configure the electronic device to save energy according with the
rules defined in the configuration. Each scenario has different option to indicate the conditions when a
device needs to save energy, so a configuration module need to be defined. Due that, this component is
really close to hardware configuration of the sensor, in this project, we will provide the component
only for Smart Spot and Cloudino technologies.

 D3.2: SmartSDK IoT and Data Management Enablers (V 1.0)

© SmartSDK Consortium 2016-2018 Page 33 of 44

4 4. DATA CONTEXT MANAGEMENT SERVICES

4.1 Introduction

During the last decades, societies have been producing tremendous amount of digitalized data,
generated by different kind of devices in all sort of domains. This massive amount of generated data
paired with the continuously increasing computing capabilities have enabled what are called the Big
Data economies. Moreover, the use of standardized APIs in this Data processing will boost the
development of service-oriented business which can complement each other building on top of these
APIs.

Aware of this reality, FIWARE defines what is known as the Data Management Chapter, a group of
Generic Enablers (GE) aimed at facilitating the processing and analysis of context data, all of them
harmonized using the NGSI standard. The services defined in this Chapter are a natural complement to
those already defined in section 2, whose purpose was restricted to the on-field sensing and data
generation. The context data services on the other hand enable high performance data processing using
different open source technologies. The computing requirements of these services are much higher
than the one data-generator devices are able to provide, and hence the need to deploy them on a
different infrastructure, typically in a cloud environment such as FIWARE Lab. This technical
difference draws the line between the two mentioned FIWARE Chapters.

As defined in the official reference documentation [8], the services of the Data Management Chapter
enable users to:

è Generate, subscribe for being notified about and query for context information coming from
different sources.

è Model changes in context as events that can be processed to detect complex situations that will
lead to generation of actions or the generation of new context information (therefore, leading to
changes in context also treatable as events).

è Processing large amounts of context information in an aggregated way, using Big Data
Map&Reduce techniques, in order to generate new knowledge, and to interact with the store to
support off the self-bundles of data, algorithms and infrastructure. Use context data and social
networks data to perform analysis.

è Process data streams (particularly, multimedia video streams) coming from different sources in
order to generate new data streams as well as context information that can be further exploited.

è Manage some context information, such as location information, presence, user or terminal
profile, etc., in a standard way.

è Manage and publish open data, in particular as context data in real time.

è Use existing data and media to enrich applications.

The services are offered by different projects, known as Generic Enablers, and are in dynamic growth
and constantly evolving. Consequently, there is always room for enhancements and introduction of
complementary features to these components. In particular, the SmartSDK plans three tasks aimed to
enhance the services of the FIWARE Data/Context Management Chapter by developing a new
prototype to give historical data retrieval of context data in the new NGSI v2; a way to encrypt
sensitive data being sent to the Context Brokers and a library to perform NGSI operations natively
from mobile devices. These tasks are presented in more details in the following subsections.

 D3.2: SmartSDK IoT and Data Management Enablers (V 1.0)

© SmartSDK Consortium 2016-2018 Page 34 of 44

4.2 Time Series for NGSI

4.2.1 Introduction

The main goal of this activity is to develop a software component that would allow efficient
management (i.e., persistence and retrieval) of historical data generated by NGSI notification sources
such as Orion Context Broker.

The reader might wonder if this was not the purpose of the already existent Generic Enabler called
Comet. In fact, Comet was developed to attend this goal, but in a time where the industry of timeseries
databases was in its early development stages and therefore it had to make some technical design
compromises in order to have some of the features the backend technologies were not providing at that
time. In concrete, Comet was designed on top of MongoDB, which is a modern technology for
databases but known to be not ideal for time series datasets. Comet attends its goals in the sense that
allows users to keep historical track of attribute values when Orion is only able to store the latest.
However, its responses are still not fully oriented to time-based indexes and it lacks advanced features
of modern time series databases such as complex aggregations, adaptive resolution and ease of
horizontal scalability.

The industry has seen significant progress in the timeseries databases arena in the last five years.
Many projects of this kind emerged and some were open-sourced after a certain maturity was reached.
Examples include Graphite, InfluxDB, CrateDB but the list goes on. With this task, we want to review
these technologies and construct a component that would allow us to use NGSI queries leveraging on
their features.

It is worth noting that the implementation approach described in this section has been presented to the
FIWARE TSC and ideas has been exchanged with the developers of Comet to gather insight and try
make the most out of this task.

The overall development of this task is tracked in the project’s issue tracker (JIRA) issue named
SMAR-82; https://jira.fiware.org/browse/SMAR-82.

4.2.2 Architecture

The envisioned software component to be developed can be seen as a context data consumer of NGSI
notifications, which interprets the notifications and is able to respond to queries asking for historical
data in different ways. The overall architecture is composed of the subcomponents show in Figure 15.

Figure 15: Architecture overview of NGSI TSDB Component

From the top of the Figure 15, as the main source of data input we have an API endpoint, which
receives NGSI notifications alerts. This means, someone previously registered this endpoint to a

 D3.2: SmartSDK IoT and Data Management Enablers (V 1.0)

© SmartSDK Consortium 2016-2018 Page 35 of 44

context data generator such as Orion.

Then there is the notifications parser, whose purpose is to interpret the notification details and
understand which entity or entities attributes are being updated with this notification.

Below that parser is the Translator, a component responsible for translating the NGSI semantics into
the specifics of the underlying time-series database requirements. Since different database
technologies are using different type systems and protocols for querying, this Translator should be
easily replaceable. Once translated, notifications can be persisted in the underlying tsdb (time-series
database).

An exposed API endpoint will allow for queries to be made in the NGSI v2 format to retrieve data
stored in the database. These endpoints are either extensions of the official NGSI API or proposed new
alternatives.

A visualization layer using state-of-the-art tools like Grafana can be built either on top of the exposed
NGSI API or directly on top of the underlying database by reusing some of the existing Grafana
plugins * (sources: https://grafana.com/plugins/influxdb, https://grafana.com/plugins/crate-datasource)

4.2.3 Status

As mentioned in the introduction, the first steps of this task involved developing a state-of-the-art
(SOTA) analysis of the available databases with support for timeseries datasets. Special interest was
given to those solutions who easily support scaling within a dockerized environment, since this criteria
aligns well with the vision of dockerized solutions SmartSDK presents in deliverable D3.1. In
addition, aligned with the FIWARE vision of openness, the analysis focused only on open source
databases.

Then, a benchmarking testbed was developed to achieve two fundamental goals:

è Compare performance of different databases solutions

è Test the bidirectional translations to guarantee NGSI data integrity

Given the aforementioned requirements, we brought to comparison InfluxDB, CrateDB and
RethinkDB. However, special care was taken to develop such benchmarking in a way that introducing
a new database solution to be compared requires the least of the efforts.

Details of the initial comparison can be found in the Appendix A. Nevertheless, the overall impression
is that InfluxDB performed very well, but its lack of support for geodata and additional datetime
columns turned out to be a showstopper. CrateDB on the other hand, although not the fastest, proved
to be very flexible for the amount of requirements we have. RethinkDB seems to be a compromise
among the two ends, but with no clear advantages over CrateDB. Thus, the work on this task will
move on with CrateDB for now.

4.2.4 Roadmap

The development of this epic was broken down into the following tasks, which at the same time, are
setting the trace for the roadmap of this activity. The first three were already finished by the time of
writing this report, the rest are yet to be done within the upcoming sprints.

è Perform a SOTA analysis of the modern available time-series databases.

è Develop a flexible benchmarking testbed.

è Develop and validate first version of custom translators.

è Scale out: test performance on distributed environment with bigger datasets.

è Develop the first version of the notifications parser.

è Develop a microservice which:

 D3.2: SmartSDK IoT and Data Management Enablers (V 1.0)

© SmartSDK Consortium 2016-2018 Page 36 of 44

• Receives NGSI v2 notifications and feeds the parser.

• Uses the parsed entities to feed the translator.

• Responds to queries interacting with the translator.

è Extend the NGSI API accordingly using well-known API manages (swaggers). This is to hook
those extended API endpoints with the previously mentioned microservice.

4.3 NGSI Encryption Layer

As more sensitive data is shared and stored, particularly within the Orion Context Broker, there is a
need to encrypt such data when specific attributes are related to sensitive information. One drawback
of encrypting data, is that it can be selectively shared only at a coarse-grained level (i.e., giving
another party your private key). This is an opportunity to allow, in a selective way, the protection of
specific sensitive data using an encryption key and maintaining the visibility of the rest of the
attributes.

In this way, the main goal of this activity is to develop a software component allowing NGSI data
encryption on the related attributes in a partial or a total manner.

This fine-grained sharing of NGSI attribute encryption (NGSI-AE) could be seen as cipher-texts that
will be labeled with sets of attributes and private keys are associated with access structures that control
which ciphertexts a user is able to decrypt.

In this NGSI-AE, a user’s key and cipher-texts are labeled with sets of descriptive attributes and a
particular key can decrypt a particular ciphertext only if there is a match between the attributes of the
cipher-text and the user’s key.

4.3.1 Architecture

The proposed software component to be developed is an attribute encryption oriented for the NGSI
specification. The overall architecture is composed of the subcomponents shown in Figure 16.

Figure 16: Architecture overview of NGSI Attribute Encryption module.

The GUI selector shows a catalogue of data models according to the application and to receive the
correct NGSI data flow. In the Figure 17, there is an example of NGSI data models using the Alarms’
data model.

 D3.2: SmartSDK IoT and Data Management Enablers (V 1.0)

© SmartSDK Consortium 2016-2018 Page 37 of 44

Figure 17: Example of selection of a data model without encryption.

The encryption mask is related to the data model, previously selected by the user, and establishes what
attributes must be encrypted. The user configures the encryption of these attributes using the GUI
selector by means of a panel. The Key Generator / Use produces the encryption key, once the data
model and the encryption mask were configured. The NGSI Attribute Encryption / Decryption
oversees the use of an encryption key for the attribute encryption for the selected data model.

Figure 18 shows an example in which the alerts’ data model will use a mask in which the location will
be encrypted.

Figure 18: Example of selection of attribute to be encrypted. In this case, the attribute location will be

encrypted in the NGSI frame.

4.3.2 Status and Roadmap

To develop this software component, the first step will be focused in developing a state-of-the-art
(SOTA) analysis of the available data encryption algorithms, specific for attribute encryption. The
main idea is to have this encryption within the same component, avoiding the need of an external data
encryption key generator and management.

With this main requirement established, we can identify the following tasks, tracing the roadmap as
well:

 D3.2: SmartSDK IoT and Data Management Enablers (V 1.0)

© SmartSDK Consortium 2016-2018 Page 38 of 44

è Develop a SOTA for attribute encryption algorithms

è Compare performance of different attribute encryption algorithms

è Develop a first version of the NGSI-AE

è Test the encryption / decryption to guarantee NGSI data integrity

4.4 SDK Library for NGSI

The objective of this component will be generate a generic library (JavaScript library) to connect
several kind of smartphones to Orion Context Broker via a NGSI RESTful interface with the objective
of sending context data for mobile contexts. In this context, the mobile devices will play a Context
Producer role. This library will enable developers to update context information that can be
geolocated. The objective is that the library can be properly used in several mobile platforms such as
Android, Windows or IOS. The proposed approach is the developers create specific interfaces in the
mobile devices (according with the different application scenarios of the project) and use the SDK
library as the basis to communicate the data to the Orion Context Broker.

In order to create the library in an incrementally manner, a first version of the library has been
developed for the Android operating system. This first version permit mobile devices with this
operating system to send several context data to the FIWARE Cloud via NGSI. This library is fully
functional and it is currently used in the Smart City scenario to indicate the location of mobile
pollution monitoring units.

4.4.1 Architecture of the system

The envisioned software component to be developed can be seen as a translator of the data captured by
the smartphone sensors to the NGSI specification. Several steps need to be accomplished to take the
different data types from the smartphone and transform the data in the NGSI required specification. As
stated before, at the present time, the library only consider the connection to Android devices. The
overall architecture is composed of the subcomponents shown in Figure 19.

In Generic, class permits the instantiation of each one of the data types that need to be used in the
mobile application. The kind of data types completely depends of the requirements of the application.

One the data types were instantiated, a Data Transfer Object is created for each one of the real world
objects of the application domain. The class need to define each object in its corresponding attributes.

In Configuration class, the connection parameters to the Context Broker are generated and configured.
The View class contain the information about all views that are required by the mobile application.

Response class manages the information that is received from the Context Broker as a response of a
request. This information is used to create messages for the user regarding the correct/incorrect
updating of data in the Context Broker.

In Resource class, the DTO are converted to the NGSI standard specification to be sent to the Context
Broker.

 D3.2: SmartSDK IoT and Data Management Enablers (V 1.0)

© SmartSDK Consortium 2016-2018 Page 39 of 44

Figure 19: Architecture of current NGSI Library

4.4.2 Status and Roadmap

The development of this component has been broken in following tasks. First five tasks are fully
functional and the rest of task will be completed within the upcoming sprints.

è Read the smartphone data in real time.

è Create data types for each one of the data obtained from smartphone.

è Create classes for configure the connection to the Context Broker.

è Send data updates to the Context Broker via NGSI.

è Obtain response about the update from the Context Broker.

è Review the current libraries for connection to Context Broker.

è Extend current version of library from Git.

è Create a set of test cases for library.

 D3.2: SmartSDK IoT and Data Management Enablers (V 1.0)

© SmartSDK Consortium 2016-2018 Page 40 of 44

5 CONCLUSION

This document presents the current status of the Internet of Things Enablement and Data / Context
Management services developed in SmartSDK. The components developed in this chapter are
orthogonal to application domains; therefore, these can be reused in the project scenarios: smart cities,
smart health and smart security.

Hardware and software components are the main contributions of this chapter that represent an
progress in current FIWARE components to manage the context data produced by sensors and
software applications and also, it represents an advance for the FIWARE components that permit the
connection of electronic devices to the FIWARE Cloud.

 D3.2: SmartSDK IoT and Data Management Enablers (V 1.0)

© SmartSDK Consortium 2016-2018 Page 41 of 44

REFERENCES

[1] SmartSDK Consortium. Description of Action. July 2016. SmartSDK project is co-funded by
the EU's Horizon2020 programme under agreement number 723174 - ©2016 EC and by
CONACYT agreement 737373.

[2] Overview of the Internet of things (2012, June 6). Retrieved 2017, May from
http://www.itu.int/ITU-T/recommendations/rec.aspx?rec=y.2060

[3] Internet of Things: Science fiction or Business fact? (2014). Retrieved 2017, May from
https://hbr.org/resources/pdfs/comm/verizon/18980_HBR_Verizon_IoT_Nov_14.pdf

[4] Internet of Things - Converging technologies for Smart Environment and Integrated Ecosystems
(2013). Retrieved 2017, May from http://www.internet-of-things-
research.eu/pdf/Converging_Technologies_for_Smart_Environments_and_Integrated_Ecosyste
ms_IERC_Book_Open_Access_2013.pdf

[5] What Makes Up the Internet of Things? (2015, Marc 6). Retrieved 2017, May from
https://www.computer.org/web/sensing-iot/content?g=53926943&type=article&urlTitle=what-
are-the-components-of-iot-

[6] From the Internet of Computers to the Internet of Things. Retrieved 2017, May from
http://www.vs.inf.ethz.ch/publ/papers/Internet-of-things.pdf

[7] Physical Web overview and official website https://google.github.io/physical-web/
[8] FIWARE Data/Context Management. Retrieved 2017, May from

https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FI-
WARE_Data/Context_Management

[9] FIWARE-NGSI v2 Specification. Retrieved 2017, May from
http://telefonicaid.github.io/fiware-orion/api/v2/stable/

[10] InfluxDB Version 1.2 Documentation. Retrieved 2017, May from
https://docs.influxdata.com/influxdb/v1.2/

[11] WHAT IS CRATEDB? Retrieved 2017, May from https://crate.io/overview/
[12] RethinkDB. Retrieved 2017, May from https://www.rethinkdb.com/
[13] RIAK TS. Retrieved 2017, May from http://basho.com/products/riak-ts/
[14] Documentation for OpenTSDB 2.3. Retrieved 2017, May from

http://opentsdb.net/docs/build/html/index.html
[15] ngsi-timeseries-api. Retrieved 2017, May from https://github.com/smartsdk/ngsi-timeseries-

api/tree/benchmark

 D3.2: SmartSDK IoT and Data Management Enablers (V 1.0)

© SmartSDK Consortium 2016-2018 Page 42 of 44

APPENDIX A – TIME-SERIES FOR NGSI INITIAL STUDY

A.1 Introduction
This appendix complements section X by giving more details on the first tasks of the “Time Series for
NGSI”. In concrete, the first steps of this epic consisted on investigating the state-of-the-art in
different modern databases used for timeseries data. Timeseries data refers to datasets which are
always indexed by time, or in other words, measurements of some type that happened at certain
different points in time. As mentioned earlier, the selected candidates for the testing were InfluxDB,
CrateDB and RethinkDB [10], [11], [12]. Other solutions unfortunately not explored in the testing due
to time constraints, but definitively worth considering in a future opportunity are Riak-ts [13] and
TSDB [14].

Complementing this SOTA, a coding testbed has been developed to try the different alternatives. The
goals of the testbed are twofold. On the one hand, it helps validate the translation of the basic NGSI
data types to the specifics of each database solution. Correctness checks are required due to the
presence of data types conversions, which are common in the storage process. On the other hand, the
testbed allows us to define a set of isolated and automated tests to basic database operations so that
comparable metrics can be extracted out of their execution.

A.2 The procedure
The syntaxes and protocols used to manipulate data differs from one database solution to the other.
Thus, to have an harmonized testbed, we decided to test the solutions using their Python3 client
drivers. Python was chosen not only because it was one of the few languages in which drivers were
available for all the tested databases; but also because of its benefits for fast prototyping and flexibility
for changes. Also, for a fair comparison, only officially supported drivers were considered.

The source code and work in progress of this epic is being kept in the SmartSDK’s github repository
called ngsi-timeseries-api [15]. In all the cases, the databases are run locally, each having one table on
a single instance on its own Docker container. This helped keep complexity low at this stage of
testing, particularly because the scalability of each solution is different and to be evaluated at a later
point, as explained in the roadmap of section X.

The following actions were measured for each candidate database. In parenthesis, the reference
codename for the figures):

è An insert of a single NGSI notification, i.e all attributes of 1 entity. (Insert 1)

è An insert of 1000 NGSI notifications, i.e a batch of 1000 updates. (Insert N)2

è A query for 1 attribute of 1 entity (Query 1A1E)

è A query for all attributes of 1 entity (Query NA1E)

è A query for 1 attribute of all entities (Query 1ANE)

è A query for all attributes of all entities (Query NANE)

è An aggregation (average) of 1 attribute for one entity

è An aggregation (average) of 1 attribute for all entities

One measure the benchmark did not include and might be worth taking into account when testing
more complex deployments is the time of data availability. This means, the time it takes for a piece of

2 Note, after this point, the number of total updates is raised to 100000 (100 entities, 1000 updates
each).

 D3.2: SmartSDK IoT and Data Management Enablers (V 1.0)

© SmartSDK Consortium 2016-2018 Page 43 of 44

data to be retrievable by a query after it was inserted. Due to internal implementation details such as
caching or replication, this is not always immediate.

The figures below show the results obtained for the metrics mentioned earlier. It is worth noting these
timings can be significantly improved by making the translation overhead more efficient, but since all
solutions are equally affected by the translation overhead, the relative comparison is still valid.

Figure 20: Insert times (in seconds) for 1 and N=1000 updates

Figure 21: Querying times (in seconds) for all the defined metrics

 D3.2: SmartSDK IoT and Data Management Enablers (V 1.0)

© SmartSDK Consortium 2016-2018 Page 44 of 44

Figure 22: Aggregation (mean) times (in seconds) for attributes of 1 and N=1000 entities

The benchmark was executed on a MacbookPro (early 2015) with a 2.7 GHz Intel Core i5 processor
and 8 GB 1867 MHz DDR3 RAM running macOS Sierra v10.12.4 (16E195). The following table
shows the database versions used in the comparison, which was, in all cases, the latest available at that
time.

Table 3: Tested database versions

 InfluxDB CrateDB RethinkDB

Version 1.2.2 1.0.5 2.3.5

Official Docker
Image

61a53f6a13f2 ae465cbdc754 c5ed876750b4

A.3 Conclusions
The main findings extracted from the analysis of both the obtained metrics and the implementation
experience with each database can be summarized as follows.

The first observation is regarding the lack of support from InfluxDB to having either geodata storage
or multiple columns for storing datetimes. Even though it proved to have good insert and query times
for single attributes, this lack of support for geodata and extra datetime columns ended up being a
showstopper. Moreover, it is clear from Figure 22, that InfluxDB is not well at responding to queries
of the type: Give me all attributes of Entity X. This is because its index is “measurements” centric,
which are equivalent to NGSI’s attributes. Hence, it works better with queries like: give me all
temperatures for Entities X.

RethinkDB on the other hand does support geodata attributes, although not as good as CrateDB does
[15]. For example, ReQL geometry objects are not pure GeoJSON objects so further conversions are
required, and not all geometry types are supported.

